2 resultados para NITROUS OXIDES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sample of 21 light duty vehicles powered by Otto cycle engines were tested on a chassis dynamometer to measure the exhaust emissions of nitrous oxide (N2O). The tests were performed at the Vehicle Emission Laboratory of CETESB (Environmental Company of the State of Sao Paulo) using the US-FTP-75 (Federal Test Procedure) driving cycle. The sample tested included passenger cars running on three types of fuels used in Brazil: gasohol, ethanol and CNG. The measurement of N2O was made using two methods: Non Dispersive InfraRed (NDIR) analyzer and Fourier Transform InfraRed spectroscopy (FTIR). Measurements of regulated pollutants were also made in order to establish correlations between N2O and NOx. The average N2O emission factors obtained by the NDIR method was 78 +/- 41 mg.km(-1) for vehicles running with gasohol, 73 +/- 45 mg.km(-1) for ethanol vehicles and 171 +/- 69 mg.km(-1) for CNG vehicles. Seventeen results using the FTIR method were also obtained. For gasohol vehicles the results showed a good agreement between the two methods, with an average emission factor of 68 +/- 41 mg.km(-1). The FTIR measurement results of N2O for ethanol and CNG vehicles were much lower than those obtained by the NDIR method. The emission factors were 17 +/- 10 mg.km(-1) and 33 +/- 17 mg.km(-1), respectively, possibly because of the interference of water vapor (present at a higher concentration in the exhaust gases of these vehicles) on measurements by the NDIR method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconium tin titanate (ZST) is often used as a dielectric resonator for the fabrication of microwave devices. Pure compositions do not sinter easily by solid state sintering; therefore, sintering ZST requires sintering aids capable of creating defects that could improve diffusion processes and/or promote liquid phase sintering. The mechanisms by which the additives influence the microstructure and, consequently, the ZSTs dielectric properties are not very clear. The effects of ZnO, Bi2O3, and La2O3, on the stoichiometry and dielectric properties of ZST sintered at different temperatures were investigated in this study.