22 resultados para NEAR-INFRARED OBSERVATIONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Context. The ESO public survey VISTA variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHK(s) filters. In addition to the multi-band imaging the variability monitoring campaign in the K-s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK(s) filters taken in the 2010 observing season. The typical image quality is similar to 0 ''.9-1 ''.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK(s) images in the disk area and 90% of the JHK(s) images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 x 10(8) stellar sources in the bulge and 1.68 x 10(8) in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 x 10(8) stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK(s) bands extend typically similar to 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K-s = 15-18 mag has rms similar to 35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.
Resumo:
Purpose: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. Materials and Methods: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. Results: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. Conclusions: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.
Resumo:
The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.
Resumo:
Titan has clouds, rain and lakes-like Earth-but composed of methane rather than water. Unlike Earth, most of the condensable methane (the equivalent of 5 m depth globally averaged(1)) lies in the atmosphere. Liquid detected on the surface (about 2 m deep) has been found by radar images only poleward of 50 degrees latitude(2,3), while dune fields pervade the tropics(4). General circulation models explain this dichotomy, predicting that methane efficiently migrates to the poles from these lower latitudes(5-7). Here we report an analysis of near-infrared spectral images(8) of the region between 20 degrees N and 20 degrees S latitude. The data reveal that the lowest fluxes in seven wavelength bands that probe Titan's surface occur in an oval region of about 60 x 40 km(2), which has been observed repeatedly since 2004. Radiative transfer analyses demonstrate that the resulting spectrum is consistent with a black surface, indicative of liquid methane on the surface. Enduring low-latitude lakes are best explained as supplied by subterranean sources (within the last 10,000 years), which may be responsible for Titan's methane, the continual photochemical depletion of which furnishes Titan's organic chemistry(9).
Resumo:
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (sub-mm) emission of the source Sgr A * associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 mu m (22.4 mJy with A(8.59 mu m) = 1.6 +/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.
Resumo:
Aims. Our goal is to study the circumstellar environment associated with each component of the wide intermediate-mass pre-main sequence binary system PDS 144 using broadband polarimetry. Methods. We present near-infrared (NIR) linear polarimetric observations of PDS 144 gathered with the IAGPOL imaging polarimeter along with the CamIV infrared camera at the Observatorio do Pico dos Dias (OPD). In addition, we re-analyzed OPD archive optical polarization to separate the binary and estimate the interstellar polarization using foreground stars. Results. After discounting the interstellar component, we found that both stars of the binary system are intrinsically polarized. The polarization vectors at optical and NIR bands of both components are aligned with the local magnetic field and the jet axis. These findings indicate an interplay between the interstellar magnetic field and the formation of the binary system. We also found that the PDS 144N is less polarized than its southern companion in the optical. However, in the NIR PDS 144N is more polarized. Our polarization data can only be explained by high inclinations (i greater than or similar to 80 degrees) for the disks of both members. In particular, comparisons of our NIR data with young stellar objects disk models suggest predominantly small grains in the circumstellar environment of PDS 144N. In spite of the different grain types in each component, the infrared spectral indexes indicate a coeval system. We also found evidence of coplanarity between the disks.
Resumo:
Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only similar to 10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. 120084 Planet. Space Sci. 56, 624-247: Tomasko, M.G. et al. [2008b] Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, CA., Tomasko, M.G., Engel, S., See, C., Doose, L, Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 mu m, are derived using clouds as diffuse reflectors in order to derive Titan's surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6-3.2 mu m indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouelic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850-867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 +/- 0.05. Titan's 4.8 mu m spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 mu m indicate that the far wings of the Voigt profile extend 460 cm(-1) from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan's atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 x 12 km(2) area surrounding the Huygens landing site. Within the 0.4-1.6 mu m spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9-5.0 mu m wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede's icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
VISTA Variables in the Via Lactea (VVV) is an ESO variability survey that is performing observations in near-infrared bands (ZY JHK(s)) toward the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than Two Micron All Sky Survey. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZY JHK(s) photometry that covers 1.636 deg(2). We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZY JHK(s)) images. The galaxy candidate colors were also compared with the predicted ones by star count models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Millennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii, and ZY JHK(s) magnitudes is provided, as well as comparisons of the results with other surveys of galaxies toward the Galactic plane.
Resumo:
Aims. Several embedded clusters are found in the Galaxy. Depending on the formation scenario, most of them can evolve to unbounded groups that are dissolved within 10 Myr to 20 Myr. A systematic study of young stellar clusters that show distinct characteristics provides interesting information on the evolutionary phases during the pre-main sequence. To identify and to understand these phases we performed a comparative study of 21 young stellar clusters. Methods. Near-infrared data from 2MASS were used to determine the structural and fundamental parameters based on surface stellar density maps, radial density profile, and colour-magnitude diagrams. The cluster members were selected according to their membership probability, which is based on the statistical comparison with the cluster proper motion. Additional members were selected on the basis of a decontamination procedure that was adopted to distinguish field stars found in the direction of the cluster area. Results. We obtained age and mass distributions by comparing pre-main sequence models with the position of cluster members in the colour-magnitude diagram. The mean age of our sample is similar to 5 Myr, where 57% of the objects is found in the 4-10 Myr range of age, while 43% is <4 Myr old. Their low E(B - V) indicate that the members are not suffering high extinction (AV <1 mag), which means they are more likely young stellar groups than embedded clusters. Relations between structural and fundamental parameters were used to verify differences and similarities that could be found among the clusters. The parameters of most of the objects show the same trends or correlations. Comparisons with other young clusters show similar relations among mass, radius, and density. Our sample tends to have larger radius and lower volumetric density than embedded clusters. These differences are compatible with the mean age of our sample, which we consider intermediate between the embedded and the exposed phases of the stellar clusters evolution.
Resumo:
This work reports on the infrared-to-visible CW frequency upconversion from planar waveguides based on Er3+-Yb3+-doped 100-xSiO(2)-xTa(2)O(5) obtained by a sol-gel process and deposited onto a SiO2-Si substrate by dip-coating. Surface morphology and optical parameters of the planar waveguides were analyzed by atomic force microscopy and the m-line technique. The influence of the composition on the electronic properties of the glass-ceramic films was followed by the band gap ranging from 4.35 to 4.51 eV upon modification of the Ta2O5 content. Intense green and red emissions were detected from the upconversion process for all the samples after excitation at 980 nm. The relative intensities of the emission bands around 550 nm and 665 nm, assigned to the H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) transitions, depended on the tantalum oxide content and the power of the laser source at 980 nm. The upconversion dynamics were investigated as a function of the Ta2O5 content and the number of photons involved in each emission process. Based on the upconversion emission spectra and 1931CIE chromaticity diagram, it is shown that color can be tailored by composition and pump power. The glass ceramic films are attractive materials for application in upconversion lasers and near infrared-to-visible upconverters in solar cells.
Resumo:
We report a study of the stellar content of the near-infrared (NIR) cluster [DBS2003] 157 embedded in the extended H ii region GAL 331.31-00.34, which is associated with the IRAS source 16085-5138. JHK photometry was carried out in order to identify potential ionizing candidates, and the follow-up NIR spectroscopy allowed the spectral classification of some sources, including two O-type stars. A combination of NIR photometry and spectroscopy data was used to obtain the distance of these two stars, with the method of spectroscopic parallax: IRS 298 (O6 V, 3.35 +/- 0.61 kpc) and IRS 339 (O9 V, 3.24 +/- 0.56 kpc). Adopting the average distance of 3.29 +/- 0.58 kpc and comparing the Lyman continuum luminosity of these stars with that required to account for the radio continuum flux of the H ii region, we conclude that these two stars are the ionizing sources of GAL 331.31-00.34. Young stellar objects (YSOs) were searched by using our NIR photometry and mid-infrared (MIR) data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The analysis of NIR and MIR colourcolour diagrams resulted in 47 YSO candidates. The GLIMPSE counterpart of IRAS 16085-5138, which presents IRAS colour indices compatible with an ultracompact H ii region, has been identified. The analysis of its spectral energy distribution between 2 and m revealed that this source shows a spectral index a= 3.6 between 2 and m, which is typical of a YSO immersed in a protostellar envelope. Lower limits to the bolometric luminosity and the mass of the embedded protostar have been estimated as L= 7.7 x 10(3) L? and M= 10 M?, respectively, which correspond to a B0B1 V zero-age main sequence star.
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.
Resumo:
Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.