3 resultados para ND3

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and - perhaps deceivingly - it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the "persistent energy transfer" really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term "afterglow" should be retained for harmful, short persistent luminescence. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency upconversion (UC) properties of Tm3+ doped TeO2-ZnO glasses containing silver nanoparticles (NPs) were investigated. Infrared-to-visible and infrared-to-infrared UC processes associated to the Tm3+ ions were studied by exciting the samples with a cw 1050 nm ytterbium laser. The luminescence intensity as a function of laser intensity was also measured using a pulsed 1047 nm Nd3+:YVO laser in order to determine the number of photons participating in the UC processes. Enhancement of the UC signals for samples heat-treated during various time intervals is attributed to the growth of the local field in the vicinity of the NPs. PL enhancement by one-order of magnitude was observed in the whole spectrum of the samples heat-treated during 48 h. On the other hand PL quenching was observed for the samples heat-treated more than 48 h. (c) 2011 Elsevier B.V. All rights reserved.