6 resultados para Myocardial Doppler Velocity (mdv)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: To integrate data from two-dimensional echocardiography (2D ECHO), three-dimensional echocardiography (3D ECHO), and tissue Doppler imaging (TDI) for prediction of left ventricular (LV) reverse remodeling (LVRR) after cardiac resynchronization therapy (CRT). It was also compared the evaluation of cardiac dyssynchrony by TDI and 3D ECHO. Methods: Twenty-four consecutive patients with heart failure, sinus rhythm, QRS = 120 msec, functional class III or IV and LV ejection fraction (LVEF) = 0.35 underwent CRT. 2D ECHO, 3D ECHO with systolic dyssynchrony index (SDI) analysis, and TDI were performed before, 3 and 6 months after CRT. Cardiac dyssynchrony analyses by TDI and SDI were compared with the Pearson's correlation test. Before CRT, a univariate analysis of baseline characteristics was performed for the construction of a logistic regression model to identify the best predictors of LVRR. Results: After 3 months of CRT, there was a moderate correlation between TDI and SDI (r = 0.52). At other time points, there was no strong correlation. Nine of twenty-four (38%) patients presented with LVRR 6 months after CRT. After logistic regression analysis, SDI (SDI > 11%) was the only independent factor in the prediction of LVRR 6 months of CRT (sensitivity = 0.89 and specificity = 0.73). After construction of receiver operator characteristic (ROC) curves, an equation was established to predict LVRR: LVRR =-0.4LVDD (mm) + 0.5LVEF (%) + 1.1SDI (%), with responders presenting values >0 (sensitivity = 0.67 and specificity = 0.87). Conclusions: In this study, there was no strong correlation between TDI and SDI. An equation is proposed for the prediction of LVRR after CRT. Although larger trials are needed to validate these findings, this equation may be useful to candidates for CRT. (Echocardiography 2012;29:678-687)
Resumo:
Background: The high and increasing prevalence of Dilated Cardiomyopathy (DCM) represents a serious public health issue. Novel technologies have been used aiming to improve diagnosis and the therapeutic approach. In this context, speckle tracking echocardiography (STE) uses natural myocardial markers to analyze the systolic deformation of the left ventricle (LV). Objective: Measure the longitudinal transmural global strain (GS) of the LV through STE in patients with severe DCM, comparing the results with normal individuals and with echocardiographic parameters established for the analysis of LV systolic function, in order to validate the method in this population. Methods: Seventy-one patients with severe DCM (53 +/- 12 years, 72% men) and 20 controls (30 +/- 8 years, 45% men) were studied. The following variables were studied: LV volumes and ejection fraction calculated by two and three-dimensional echocardiography, Doppler parameters, Tissue Doppler Imaging systolic and diastolic LV velocities and GS obtained by STE. Results: Compared with controls, LV volumes were higher in the DCM group; however, LVEF and peak E-wave velocity were lower in the latter. The myocardial performance index was higher in the patient group. Tissue Doppler myocardial velocities (S', e', a') were significantly lower and E/e' ratio was higher in the DCM group. GS was decreased in the DCM group (-5.5% +/- 2.3%) when compared with controls (-14.0% +/- 1.8%). Conclusion: In this study, GS was significantly lower in patients with severe DCM, bringing new perspectives for therapeutic approaches in this specific population. (Arq Bras Cardiol 2012;99(3):834-842)
Resumo:
In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29 +/- 0.27 x 1.1 +/- 0.26-basal; p=0.005) and MCV decreased (9.1 +/- 2.8 x 11.02 +/- 2.6-basal; p=0.006) from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4 +/- 6.9% x 85.3 +/- 6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.
Resumo:
Objectives: To determine the correlation between ph at birth and venous Doppler parameters in pregnancies with placental dysfunction. Methods: This was a prospective cohort study of 58 pregnancies with the diagnosis of placental dysfunction between 26 and 34 weeks of gestation. Inclusion criteria were singleton pregnancies, abnormal umbilical artery (UA) Doppler, fetal growth restriction diagnosed by estimated fetal weight <10th centile for gestational age, intact membranes, and absence of fetal congenital abnormalities. The Doppler measurements were the following: UA pulsatility index (PI), ductus venosus (DV) pulsatility index for veins (PIV), intra-abdominal umbilical vein (UV) time-averaged maximum velocity (TAMxV) and blood flow and left portal vein (LPV) time-averaged maximum velocity (TAMxV) and blood flow. All Doppler parameters were transformed into z-scores (SD values from the mean) according to normative references. Results: The UA pH at birth showed a negative significant correlation with the DV-PIV (p = 0.004) and the DV-PIV z-score (p = 0.004), while LPV TAMxV (p = 0.004), LPV TAMxV z-score (p = 0.002), LPV blood flow (p = 0.01), LPV blood flow normalized (p = 0.04) and UV blood flow (p = 0.04) positively correlated with pH at birth. Multiple regression analysis was performed and the DV-PIV z-score was the variable that independently correlated with pH at birth (p = 0.002). Conclusions: the present results suggest that changes in fetal venous blood flow, mainly DV and LPV are useful in the management of cases with early onset placental insufficiency and that venous Doppler parameters correlate with pH at birth.
Resumo:
Objectives: To identify potential associations between fetal surveillance tests and acidosis at birth in pregnancies with abnormal but positive end-diastolic velocity in the umbilical artery. Methods: A prospective case-control study [group 1: pH < 7.2; group 2: pH >= 7.2] including 46 fetuses with abnormal but positive end-diastolic velocity in the umbilical artery was conducted between February 2007 and March 2009. Outcome variables were evaluated by univariate analysis and compared between the two groups. Clinically relevant and statistically significant variables were analyzed by logistic regression. Results: Abnormal nonstress test, presence of deceleration, and absent fetal breathing movements were statistically significant. Logistic regression analysis revealed that fetal heart rate (FHR) deceleration in the nonstress test is the only predictor of fetal acidosis at birth (p = 0.024; OR = 8.2; 95% CI: 1.2-52). Conclusions: In fetuses with positive end-diastolic flow velocity, acute variables of the antenatal surveillance tests are correlated with acidosis at birth and FHR deceleration in the nonstress test is the only predictor of fetal acidosis.
Resumo:
Early Diagnosis of Miocardial Dysfunction in Patients with Hematological Malignancies Submitted to Chemotherapy. Preliminary Background: Considering the current diagnostic improvements and tl1erapeutic approaches, patients witl 1 cancer can now be healed or keep the disease under control, still, the chemotherapy may cause heart damage, evolving to Congestive Heart Failure. Recognition of those changes increases the chances of control the endpoints; hence, new parameters of cardiac and fluid mechanics analysis have been used to assess the myocardial function, pursuing an earlier diagnosis of the cardiac alterations. This study aimed to detect early cardiac dysfunction consequently to chemotherapy in patients with hematological malignancies (HM). Methods: Patients with leukemia and lymphoma, submitted to chemotherapy, without knowing heart diseases were studied. Healthy volunteers served as the control group. Conventional 2DE parameters of myocardial function were analyzed. The peak global longitudinal, circumferential and radial left ventricular (LV) strain were deternined by 2D and 3D speckle tracking (STE); peak area strain measured by 3D STE and LV torsionn, twisting rate, recoil / recoil rate assessed by 2D STE. The LV vortex formation time (VFT) during the rapid diastolic filling was estimated by the 2D mitral valve (MV) planimetry and Pulsed Doppler LV inflow by: VFT- 4(1-β) / π x α3 x LVEF Where 1- β is the E wave contribution to the LV stroke volume and α3 is a volumetric variable related to the MV area. The statistical level was settled on 5%. Results: See Table. Conclusion: Despite the differences between the two groups concerning the LVESV, LVEF and E´, those parameters still are in the normal range when considering the patients submitted to chemotherapy; thus, in the clinical setting, they are not so noticeable. The 3D GLS was smaller among the patients, oppositely to the 2D GLS, suggesting that the former variable is more accurate to assess tlhe LV systolic function. The VFT is a dimensionless measure of the optimal vortex development inside the LV chamber; reflecting the efficiency of the diastolic filling and, consequently, blood ejection. This index showed to be diminished in patients with HM submitted to chemotherapy, indicating an impairment of the in1pulse and thrust, hence appearing to be a very early marker of diastolic and systolic dysfunction in this group.