5 resultados para Music Performance Anxiety (MPA)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este texto examina as principais diferenças de enfoque relacionadas ao papel dos intérpretes na realização de duas diferentes propostas de jogo. Para tanto, são comparadas algumas obras de John Cage e as práticas de grupos que se dedicam à livre improvisação musical, principalmente do grupo Akronon.1 Procura-se demonstrar que as propostas de Cage, que estão situadas num plano conceitual, e as propostas da livre improvisação, que partem de uma prática experimental interativa baseada numa manipulação empírica dos sons, resultam em concepções bastante distintas a respeito do papel do intérprete. A partir desta perspectiva, afirma-se o caráter potente da livre improvisação que pode ser pensada enquanto prática de um jogo ideal conforme conceituação proposta pelo filósofo francês Gilles Deleuze

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the effects of listening to music on attentional focus, rating of perceived exertion (RPE), pacing strategy and performance during a simulated 5-km running race. 15 participants performed 2 controlled trials to establish their best baseline time, followed by 2 counterbalanced experimental trials during which they listened to music during the first (M-start) or the last (M-finish) 1.5 km. The mean running velocity during the first 1.5 km was significantly higher in M-start than in the fastest control condition (p < 0.05), but there was no difference in velocity between conditions during the last 1.5 km (p > 0.05). The faster first 1.5 m in M-start was accompanied by a reduction in associative thoughts compared with the fastest control condition. There were no significant differences in RPE between conditions (p > 0.05). These results suggest that listening to music at the beginning of a trial may draw the attentional focus away from internal sensations of fatigue to thoughts about the external environment. However, along with the reduction in associative thoughts and the increase in running velocity while listening to music, the RPE increased linearly and similarly under all conditions, suggesting that the change in velocity throughout the race may be to maintain the same rate of RPE increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of evidence indicates that the dorsal raphe nucleus (DR) is not a homogenous structure, but an aggregate of distinctive populations of neurons that may differ anatomically, neurochemically and functionally. Other findings suggest that serotonergic neurons within the mid-caudal and caudal part of the DR are involved in anxiety processing while those within the lateral wings (IwDR) and ventrolateral periaqueductal gray (vIPAG) are responsive to panic-evoking stimuli/situations. However, no study to date has directly compared the activity of 5-HT and non-5HT neurons within different subnuclei of the DR following the expression of anxiety- and panic-related defensive responses. In the present investigation, the number of doubly immunostained cells for Fos protein and tryptophan hydroxylase, a marker of serotonergic neurons, was assessed within the rat DR, median raphe nucleus (MRN) and PAG following inhibitory avoidance and escape performance in the elevated T-maze, behaviors associated with anxiety and panic, respectively. Inhibitory avoidance, but not escape, significantly increased the number of Fos-expressing serotonergic neurons within the mid-caudal part of the dorsal subnucleus, caudal and interfascicular subnuclei of the DR and in the MRN. Escape, on the other hand, caused a marked increase in the activity of non-5HT cells within the IwDR, vIPAG, dorsolateral and dorsomedial columns of the PAG. These results strongly corroborate the view that different subsets of neurons in the DR are activated by anxiety- and panic-relevant stimuli/situations, with important implications for the understanding of the pathophysiology of generalized anxiety and panic disorders. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis.