7 resultados para Museum conservation methods.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Premise of the study: A new set of microsatellite or simple sequence repeat (SSR) markers for garlic, an important medicinal spice, was developed to aid studies of genetic diversity and to define efficient strategies for germplasm conservation. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 16 SSR loci were developed and optimized in garlic. Ten loci were found to be polymorphic after screening 75 accessions. The parameters used to characterize the loci were observed and expected heterozygosity, number of alleles, Shannon Index, and polymorphism information content (PIC). A total of 44 alleles were identified, with an average of 4.4 alleles per loci. The vast majority of loci were moderate to highly informative according to PIC and the Shannon Index. Conclusion: The new SSR markers have the potential to be informative tools for genetic diversity, allele mining, mapping and associative studies, and in the management and conservation of garlic collections.
Resumo:
Populations of grassland birds are declining in Brazil due to profound alterations to grassland habitats. In this paper, we present recent records and range extensions for 12 threatened or little known Brazilian grassland species: Ocellated Crake Micropygia schomburgkii, Sickle-winged Nightjar Eleothreptus anomalus, Campo Miner Geositta poeciloptera, Rufous-sided Pygmytyrant Euscarthmus rufomarginatus, Sharp-tailed Grass-tyrant Culicivora caudacuta, Cocktailed Tyrant Alectrurus tricolor, Cinereous Warbling-finch Poospiza cinerea, Black-masked Finch Coryphaspiza melanotis, Tawny-bellied Seedeater Sporophila hypoxantha, Marsh Seedeater S. palustris, Chestnut Seedeater S. cinnamomea and Black-bellied Seedeater S. melanogaster. We also comment on the biogeography and conservation of these species.
Resumo:
The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p. przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Aim Estimates of geographic range size derived from natural history museum specimens are probably biased for many species. We aim to determine how bias in these estimates relates to range size. Location We conducted computer simulations based on herbarium specimen records from localities ranging from the southern United States to northern Argentina. Methods We used theory on the sampling distribution of the mean and variance to develop working hypotheses about how range size, defined as area of occupancy (AOO), was related to the inter-specific distribution of: (1) mean collection effort per area across the range of a species (MC); (2) variance in collection effort per area across the range of a species (VC); and (3) proportional bias in AOO estimates (PBias: the difference between the expected value of the estimate of AOO and true AOO, divided by true AOO). We tested predictions from these hypotheses using computer simulations based on a dataset of more than 29,000 herbarium specimen records documenting occurrences of 377 plant species in the tribe Bignonieae (Bignoniaceae). Results The working hypotheses predicted that the mean of the inter-specific distribution of MC, VC and PBias were independent of AOO, but that the respective variance and skewness decreased with increasing AOO. Computer simulations supported all but one prediction: the variance of the inter-specific distribution of VC did not decrease with increasing AOO. Main conclusions Our results suggest that, despite an invariant mean, the dispersion and symmetry of the inter-specific distribution of PBias decreases as AOO increases. As AOO increased, range size was less severely underestimated for a large proportion of simulated species. However, as AOO increased, range size estimates having extremely low bias were less common.
Resumo:
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. Results: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades + Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. Conclusions: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.
Resumo:
FAPESP/BIOTA