3 resultados para Musculoskeletal model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.
Resumo:
Background: In the literature, there are several experimental models that induce scoliosis in rats; however, they make use of drugs or invasive interventions to generate a scoliotic curve. Objectives: To design and apply a non-invasive immobilization model to induce scoliosis in rats. Methods: Four-week old male Wistar rats (85 +/- 3.3 g) were divided into two groups: control (CG) and scoliosis (SG). The animals in the SG were immobilized by two vests (scapular and pelvic) made from polyvinyl chloride (PVC) and externally attached to each other by a retainer that regulated the scoliosis angle for twelve weeks with left convexity. After immobilization, the abdominal, intercostal, paravertebral, and pectoral muscles were collected for chemical and metabolic analyses. Radiographic reports were performed every 30 days over a 16-week period. Results: The model was effective in the induction of scoliosis, even 30 days after immobilization, with a stable angle of 28 +/- 5 degrees. The chemical and metabolic analyses showed a decrease (p<0.05) in the glycogenic reserves and in the relationship between DNA and total protein reserves of all the muscles analyzed in the scoliosis group, being lower (p<0.05) in the convex side. The values for the Homeostatic Model Assessment of Insulin Resistance indicated a resistance condition to insulin (p<0.05) in the scoliosis group (0.66 +/- 0.03), when compared to the control group (0.81 +/- 0.02). Conclusions: The scoliosis curvature remained stable 30 days after immobilization. The chemical and metabolic analyses suggest changes in muscular homeostasis during the induced scoliosis process.
Resumo:
Objective: The purpose of this study was to investigate the rat skin penetration abilities of two commercially available low-level laser therapy (LLLT) devices during 150 sec of irradiation. Background data: Effective LLLT irradiation typically lasts from 20 sec up to a few minutes, but the LLLT time-profiles for skin penetration of light energy have not yet been investigated. Materials and methods: Sixty-two skin flaps overlaying rat's gastrocnemius muscles were harvested and immediately irradiated with LLLT devices. Irradiation was performed either with a 810 nm, 200mW continuous wave laser, or with a 904 nm, 60mW superpulsed laser, and the amount of penetrating light energy was measured by an optical power meter and registered at seven time points (range, 1-150 sec). Results: With the continuous wave 810nm laser probe in skin contact, the amount of penetrating light energy was stable at similar to 20% (SEM +/- 0.6) of the initial optical output during 150 sec irradiation. However, irradiation with the superpulsed 904 nm, 60mW laser showed a linear increase in penetrating energy from 38% (SEM +/- 1.4) to 58% (SEM +/- 3.5) during 150 sec of exposure. The skin penetration abilities were significantly different (p < 0.01) between the two lasers at all measured time points. Conclusions: LLLT irradiation through rat skin leaves sufficient subdermal light energy to influence pathological processes and tissue repair. The finding that superpulsed 904nm LLLT light energy penetrates 2-3 easier through the rat skin barrier than 810nm continuous wave LLLT, corresponds well with results of LLLT dose analyses in systematic reviews of LLLT in musculoskeletal disorders. This may explain why the differentiation between these laser types has been needed in the clinical dosage recommendations of World Association for Laser Therapy.