2 resultados para Multi-criteria Decision Support (MCDS)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Strategic Environmental Assessment (SEA) of the sugar and alcohol sector guides a territorial and sectoral planning that benefits most of the local society and supports this economic activity in all its stages. In this way, the present work aims to determine an index of aggregation of the indicators generated in the baseline of the SEA process, called Index of Sustainability of Expansion of the Sugar and Alcohol Sector (IScana). For this, it was used the normalization of the indicators of each city by the fuzzy logic and attribution of weights by the Analytic Hierarchy Process (AHP). Then, the IScana values had been spatialized in the region of 'Grande Dourados'-Mato Grosso do Sul State. The northern portion concentrated the highest values of IScana, 0.48 and 0.55, referring to the cities of Nova Alvorada do Sul and Rio Brilhante, while, in the central portion, the city of Dourados presented the lowest value, 0.10. The selection of the set of indicators forming the IScana, and their relative importance, was satisfactory for the application of fuzzy logic and AHP techniques. The IScana index supplies objective information regarding the diagnosis of the region for the application of SEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.