7 resultados para Multi-component coupling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the present study, trail pheromone blends are identified for the first time in termites. In the phylogenetically complex Nasutitermitinae, trail-following pheromones are composed of dodecatrienol and neocembrene, the proportions of which vary according to species, although neocembrene is always more abundant than dodecatrienol (by 25-250-fold). Depending on species, termites were more sensitive to dodecatrienol or to neocembrene but the association of both components always elicited significantly higher trail following, with a clear synergistic effect in most of the studied species. A third component, trinervitatriene, was identified in the sternal gland secretion of several species, but its function remains unknown. The secretion of trail pheromone blends appears to be an important step in the evolution of chemical communication in termites. The pheromone optimizes foraging, and promotes their ecological success. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 20-27.
Resumo:
In this work, multi-component white cast iron was applied by HVOF thermal spray process as alternative to other manufacture processes. Effects of substrate type, substrate pre-heating and heat treatment of coating on mass loss have been determined by rubber wheel apparatus in accordance with ASTM G-65. Furthermore, influence of heat treatment of coating on wear mechanisms was also determined by scanning electron microscopy analysis. Heat-treated coatings presented mass loss three times lower than as-sprayed coatings. Furthermore, wear mechanisms of as-sprayed coating are micro-cutting associated with cracks close to unmelted particles and pores. In heat-treated coating, lesser mass loss is due to sintering. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Binary and ternary systems of Ni2+, Zn2+, and Pb2+ were investigated at initial metal concentrations of 0.5, 1.0 and 2.0 mM as competitive adsorbates using Arthrospira platensis and Chlorella vulgaris as biosorbents. The experimental results were evaluated in terms of equilibrium sorption capacity and metal removal efficiency and fitted to the multi-component Langmuir and Freundlich isotherms. The pseudo second order model of Ho and McKay described well the adsorption kinetics, and the FT-IR spectroscopy confirmed metal binding to both biomasses. Ni2+ and Zn2+ interference on Pb2+ sorption was lower than the contrary, likely due to biosorbent preference to Pb. In general, the higher the total initial metal concentration, the lower the adsorption capacity. The results of this study demonstrated that dry biomass of C. vulgaris behaved as better biosorbent than A. platensis and suggest its use as an effective alternative sorbent for metal removal from wastewater. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The KASCADE-Grande experiment, located at Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 10(14)-10(18) eV. Main goals of the experiment are the measurement of the all-particle energy spectrum and mass composition in the 10(16)-10(18) eV range by sampling charged (N-ch) and muon (N-mu) components of the air shower. The method to derive the energy spectrum and its uncertainties, as well as the implications of the obtained result, is discussed. An overview of the analyses performed by KASCADE-Grande to derive the mass composition of the measured high-energy comic rays is presented as well. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Background: Exercise training (ET) can reduce blood pressure (BP) and prevent functional disability. However, the effects of low volumes of training have been poorly studied, especially in elderly hypertensive patients. Objectives: To investigate the effects of a multi-component ET program (aerobic training, strength, flexibility, and balance) on BP, physical fitness, and functional ability of elderly hypertensive patients. Methods: Thirty-six elderly hypertensive patients with optimal clinical treatment underwent a multi-component ET program: two 60-minute sessions a week for 12 weeks at a Basic Health Unit. Results: Compared to pre-training values, systolic and diastolic BP were reduced by 3.6% and 1.2%, respectively (p < 0.001), body mass index was reduced by 1.1% (p < 0.001), and peripheral blood glucose was reduced by 2.5% (p= 0.002). There were improvements in all physical fitness domains: muscle strength (chair-stand test and elbow flexor test; p < 0.001), static balance test (unipedal stance test; p < 0.029), aerobic capacity (stationary gait test; p < 0.001), except for flexibility (sit and reach test). Moreover, there was a reduction in the time required to perform two functional ability tests: "put on sock" and "sit down, stand up, and move around the house" (p < 0.001). Conclusions: Lower volumes of ET improved BP, metabolic parameters, and physical fitness and reflected in the functional ability of elderly hypertensive patients. Trial Registration RBR-2xgjh3.
Resumo:
The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.
Resumo:
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (sub-mm) emission of the source Sgr A * associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 mu m (22.4 mJy with A(8.59 mu m) = 1.6 +/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.