4 resultados para Morse, Samuel Finley Breese, 1791-1872
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
We prove a new Morse-Sard-type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C-2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the p-regularity and its bridge toward the rho-regularity which implies topological triviality at infinity.
Resumo:
From a recent perspective the morse-taper dental implants connections are increasingly being used as an alternative for replacement of a missing teeth. Nevertheless, there are a large variety of prosthetic components available on the market with some limitations regarding the final prothesis. This article demonstrated the difficulties and limitations of prosthesis implant-retained connections when using morse-taper implants (with a prosthetic index) case in which the surgical placement of the implant wasn’t successfully performed. The alternative to overcome this scenario was the technique using the tube screw over the top of a mini abutment component. It was possible to manufacture and to have satisfactory adaptation, achieving the satisfaction of the patient, restoring function and esthetics.
Resumo:
AIM: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). METHODS: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench 10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1.5 mm thickness and the trabecular bone completed the bone block. Four groups were formed: group 11CBL (11 mm implant length on cortical bone level), group 11TBL (11 mm implant length on trabecular bone level), group 13CBL (13mm implant length on cortical bone level) and group 13TBL (13 mm implant length on trabecular bone level). Oblique 200 N loads were applied. Von Mises equivalent stresses in cortical and trabecular bones were evaluated with the same design program. RESULTS: The results were shown qualitatively and quantitatively by standard scales for each type of bone. By the results obtained, it can be suggested that positioning the implant completely in trabecular bone brings harm with respect to the generated stresses. Its implantation in the cortical bone has advantages with respect to better anchoring and locking, reflecting a better dissipation of the stresses along the implant/bone interfaces. In addition, the search for anchoring the implant in its apical region in cortical bone is of great value to improve stabilization and consequently better stress distribution. CONCLUSIONS: The implant position slightly below the bone in relation to the bone crest brings advantages as the best long-term predictability with respect to the expected neck bone loss.