3 resultados para Moon landing

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main questions addressed in this work were whether and how adaptation to suppression of visual information occurs in a free-fall paradigm, and the extent to which vision availability influences the control of landing movements. The prelanding modulation of EMG timing and amplitude of four lower-limb muscles was investigated. Participants performed six consecutive drop-landings from four different heights in two experimental conditions: with and without vision. Experimental design precluded participants from estimating the height of the drop. Since cues provided by proprioceptive and vestibular information acquired during the first trials were processed, the nervous system rapidly adapted to the lack of visual information, and hence produced a motor output (i.e., prelanding EMG modulation) similar to that observed when performing the activity with vision available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only similar to 10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. 120084 Planet. Space Sci. 56, 624-247: Tomasko, M.G. et al. [2008b] Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, CA., Tomasko, M.G., Engel, S., See, C., Doose, L, Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 mu m, are derived using clouds as diffuse reflectors in order to derive Titan's surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6-3.2 mu m indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouelic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850-867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 +/- 0.05. Titan's 4.8 mu m spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 mu m indicate that the far wings of the Voigt profile extend 460 cm(-1) from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan's atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 x 12 km(2) area surrounding the Huygens landing site. Within the 0.4-1.6 mu m spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9-5.0 mu m wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede's icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we report results from the application to the study of the rotation of the Moon of the creeping tide theory just proposed (Ferraz-Mello, Cel. Mech. Dyn. Astron., submitted. ArXiv astro-ph 1204.3957). The choice of the Moon for the first application of this new theory is motivated by the fact that the Moon is one of the best observed celestial bodies and the comparison of the theoretical predictions of the theory with observations i may validate the theory or point out the need of further improvements. Particularly, the tidal perturbations of the rotation of the Moon - the physical libration of the Moon - have been detected in the Lunar Laser Ranging measurements (Williams et al. JGR 106, 27933, 2001). The major difficulty in this application comes from the fact that tidal torques in a planet-satellite system are very sensitive to the distance between the two-bodies, which is strongly affected by Solar perturbations. In the case of the Moon, the main solar perturbations - the Evection and the Variation - are more important than most of the Keplerian oscillations, being smaller only than the first Keplerian harmonic (equation of the centre). Besides, two of the three components of the Moon's libration in longitude whose tidal contributions were determined by LLR are related to these perturbations. The results may allow us to determine the main parameter of a possible Moon's creeping tide. The preliminary results point to a relaxation factor (gamma) 2 to 4 times smaller than the one predicted from the often cited values of thr Moon's quality factor Q (between 30 and 40), and points to larger Q values.