56 resultados para Molecular-crystal Model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steadystate probability density of protocell compositions.
Resumo:
Molecular dynamics simulations of the model protein chignolin with explicit solvent were carried out, in order to analyze the influence of the Berendsen thermostat on the evolution and folding of the peptide. The dependence of the peptide behavior on temperature was tested with the commonly employed thermostat scheme consisting of one thermostat for the protein and another for the solvent. The thermostat coupling time of the protein was increased to infinity, when the protein is not in direct contact with the thermal bath, a situation known as minimally invasive thermostat. In agreement with other works, it was observed that only in the last situation the instantaneous temperature of the model protein obeys a canonical distribution. As for the folding studies, it was shown that, in the applications of the commonly utilized thermostat schemes, the systems are trapped in local minima regions from which it has difficulty escaping. With the minimally invasive thermostat the time that the protein needs to fold was reduced by two to three times. These results show that the obstacles to the evolution of the extended peptide to the folded structure can be overcome when the temperature of the peptide is not directly controlled.
Resumo:
Adult stem cells are distributed through the whole organism, and present a great potential for the therapy of different types of disease. For the design of efficient therapeutic strategies, it is important to have a more detailed understanding of their basic biological characteristics, as well as of the signals produced by damaged tissues and to which they respond. Myocardial infarction (MI), a disease caused by a lack of blood flow supply in the heart, represents the most common cause of morbidity and mortality in the Western world. Stem cell therapy arises as a promising alternative to conventional treatments, which are often ineffective in preventing loss of cardiomyocytes and fibrosis. Cell therapy protocols must take into account the molecular events that occur in the regenerative niche of MI. In the present study, we investigated the expression profile of ten genes coding for chemokines or cytokines in a murine model of MI, aiming at the characterization of the regenerative niche. MI was induced in adult C57BL/6 mice and heart samples were collected after 24 h and 30 days, as well as from control animals, for quantitative RT-PCR. Expression of the chemokine genes CCL2, CCL3, CCL4, CCL7, CXCL2 and CXCL10 was significantly increased 24 h after infarction, returning to baseline levels on day 30. Expression of the CCL8 gene significantly increased only on day 30, whereas gene expression of CXCL12 and CX3CL1 were not significantly increased in either ischemic period. Finally, expression of the IL-6 gene increased 24 h after infarction and was maintained at a significantly higher level than control samples 30 days later. These results contribute to the better knowledge of the regenerative niche in MI, allowing a more efficient selection or genetic manipulation of cells in therapeutic protocols.
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.
Resumo:
Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.
Resumo:
The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved a-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pain was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's alpha-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.
Resumo:
Objective Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)derived leukotriene B4 (LTB4) in driving tissue inflammation and hypernociception in a murine model of gout. Methods. Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1 beta (IL-1 beta), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB4 activity, cytokine (IL-1 beta, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. Results. Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophildependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1 beta/MyD88-dependent manner. LTB4 was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1 beta production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB4 after MSU crystal injection, and LTB4 was relevant in the MSU crystalinduced maturation of IL-1 beta. Mechanistically, LTB4 drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. Conclusion. These results reveal the role of the NLRP3 inflammasome in mediating MSU crystalinduced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB4 in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Resumo:
Background/Purpose: The mechanisms of increased collagen production and liver parenchyma fibrosis are poorly understood. These phenomena are observed mainly in children with biliary obstruction (BO), and in a great number of patients, the evolution to biliary cirrhosis and hepatic failure leads to the need for liver transplantation before adolescence. However, pediatric liver transplantation presents with biliary complications in 20% to 30% of cases in the postoperative period. Intra-or extrahepatic stenosis of bile ducts is frequent and may lead to secondary biliary cirrhosis and the need for retransplantation. It is unknown whether biliary stenosis involving isolated segments or lobes may affect the adjacent nonobstructed lobes by paracrine or endocrine means, leading to fibrosis in this parenchyma. Therefore, the present study aimed to create an experimental model of selective biliary duct ligation in young animals with a subsequent evaluation of the histologic and molecular alterations in liver parenchyma of the obstructed and nonobstructed lobes. Methods: After a pilot study to standardize the surgical procedures, weaning rats underwent ligation of the bile ducts of the median, left lateral, and caudate liver lobes. The bile duct of the right lateral lobe was kept intact. To avoid intrahepatic biliary duct collaterals neoformation, the parenchymal connection between the right lateral and median lobes was clamped. The animals were divided into groups according to the time of death: 1, 2, 3, 4, and 8 weeks after surgical procedure. After death, the median and left lateral lobes (with BO) and the right lateral lobe (without BO [NBO]) were harvested separately. A group of 8 healthy nonoperated on animals served as controls. Liver tissues were subjected to histologic evaluation and quantification of the ductular proliferation and of the portal fibrosis. The expressions of smooth muscle alpha-actin (alpha-SMA), desmin, and transforming growth factor beta 1 genes were studied by molecular analyses (semiquantitative reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction, a quantitative method). Results: Histologic analyses revealed the occurrence of ductular proliferation and collagen formation in the portal spaces of both BO and NBO lobes. These phenomena were observed later in NBO than BO. Bile duct density significantly increased 1 week after duct ligation; it decreased after 2 and 3 weeks and then increased again after 4 and 8 weeks in both BO and NBO lobes. The portal space collagen area increased after 2 weeks in both BO and NBO lobes. After 3 weeks, collagen deposition in BO was even higher, and in NBO, the collagen area started decreasing after 2 weeks. Molecular analyses revealed increased expression of the alpha-SMA gene in both BO and NBO lobes. The semiquantitative and quantitative methods showed concordant results. Conclusions: The ligation of a duct responsible for biliary drainage of the liver lobe promoted alterations in the parenchyma and in the adjacent nonobstructed parenchyma by paracrine and/or endocrine means. This was supported by histologic findings and increased expression of alpha-SMA, a protein related to hepatic fibrogenesis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.
Resumo:
The human parasite Schistosoma mansoni is totally dependent on the purine salvage pathway in order to supply large quantities of purine precursors for its energy and DNA biosynthetic needs. Adenylate kinase (ADK) is responsible for the conversion of AMP (produced by the adenosine kinase reaction) into ADP, which is subsequently converted into ATP by nucleoside diphosphate kinase (NDPK). ADK and NDPK are the most active enzymes of the pathway, probably reflecting an evolutionary adaptation due to the intense use of the branch in which they participate. However, notwithstanding their importance very little information has been accumulated found regarding these enzymes. In this work two adenylate kinases from S. mansoni were cloned and heterologously expressed in Escherichia coil. The purified products were utilized in activity assays, and displayed kinetic parameters similar to the corresponding human orthologous proteins. The cytosolic S. mansoni ADK was crystallized and its structure solved allowing us to detect a difference in the nucleotide binding site when compared with the human ortholog. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Crown ethers have the ability of solubilizing inorganic salts in apolar solvents and to promote chemical reactions by phase-transfer catalysis. However, details on how crown ethers catalyze ionic S(N)2 reactions and control selectivity are not well understood. In this work, we have used high level theoretical calculations to shed light on the details of phase-transfer catalysis mechanism of KF reaction with alkyl halides promoted by 18-crown-6. A complete analysis of the of the model reaction between KF(18-crown-6) and ethyl bromide reveals that the calculations can accurately predict the product ratio and the overall kinetics. Our results point out the importance of the K* ion and of the crown ether ring in determining product selectivity. While the K* ion favors the S(N)2 over the E2 anti pathway, the crown ether ring favors the S(N)2 over E2 syn route. The combination effects lead to a predicted 94% for the S(N)2 pathway in excellent agreement with the experimental value of 92%. A detailed analysis of the overall mechanism of the reaction under phase-transfer conditions also reveals that the KBr product generated in the nucleophilic fluorination acts as an inhibitor of the 18-crown-6 catalyst and it is responsible for the observed slow reaction rate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.
Resumo:
The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).