6 resultados para Molecular properties

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases involved in the extracellular matrix degradation. MMP-2 and MMP9 are overexpressed in several human cancer types, including melanoma, thus the development of new compounds to inhibit MMPs' activity is desirable. Molecular dynamic simulation and molecular properties calculations were performed on a set of novel beta-N-biaryl ether sulfonamide-based hydroxamates, reported as MMP-2 and MMP-9 inhibitors, for providing data to develop an exploratory analysis. Thermodynamic, electronic, and steric descriptors have significantly discriminated highly active from moderately and less active inhibitors of MMP-2 whereas apparent partition coefficient at pH 1.5 was also significant for the MMP-9 data set. Compound 47 was considered an outlier in all analysis, indicating the presence of a bulky substituent group in R3 is crucial to this set of inhibitors for the establishment of molecular interactions with the S1 subsite of both enzymes, but there is a limit. (C) 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structureactivity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC50?=?69.3 mu M) and Leishmania brasiliensis (IC50?=?59.4 mu M) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC50?=?99.9 mu M for L. amazonensis and IC50?=?90.5 mu M for L. braziliensis) and 3 (IC50?=?122.9 mu M for L. amazonensis and IC50?=?109.8 mu M for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiosemicarbazones are cruzain inhibitors which have been identified as potential antitrypanosomal agents. In this work, several molecular properties were calculated at the density functional theory (DFT)/B3LYP/6-311G* level for a set of 44 thiosemicarbazones. Unsupervised and supervised pattern recognition techniques (hierarchical cluster analysis, principal component analysis, kth-nearest neighbors, and soft independent modeling by class analogy) were used to obtain structureactivity relationship models, which are able to classify unknown compounds according to their activities. The chemometric analyses performed here revealed that 12 descriptors can be considered responsible for the discrimination between high and low activity compounds. Classification models were validated with an external test set, showing that predictive classifications were achieved with the selected variable set. The results obtained here are in good agreement with previous findings from the literature, suggesting that our models can be useful on further investigations on the molecular determinants for the antichagasic activity. (C) 2012 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.