3 resultados para Modularité massive
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.
Resumo:
Ptosis with excess skin in the pubic area is a very common deformity in patients after massive weight loss. This deformity requires adequate surgical treatment whether combined with abdominoplasty or not. The enlarged pubogenital area may lead to psychosocial distress and impaired quality of life. A series of 23 women with a mean age of 39.5 years who previously underwent bariatric surgeries and later presented with pubogenital ptosis underwent monsplasty. The preoperative surgical markings and the surgical technique presented are easily reproducible. In this prospective study, the surgical outcomes were assessed by questionnaires applied to the patients, who scored the following parameters: movement dynamics, aesthetic appearance, sexual performance, improved hygiene, and use of clothing items. Four of the parameters assessed (movement dynamics, aesthetic appearance, hygiene, and use of clothing items) showed clear improvement, with scores ranging from good to very good. A small percentage of the patients (13%) reported fair improvement in sexual performance. The findings showed monsplasty to be a simple and reproducible technique with favorable outcomes and low morbidity rates.
Resumo:
We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.