22 resultados para Modeling system
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents the development of a mathematical model to optimize the management and operation of the Brazilian hydrothermal system. The system consists of a large set of individual hydropower plants and a set of aggregated thermal plants. The energy generated in the system is interconnected by a transmission network so it can be transmitted to centers of consumption throughout the country. The optimization model offered is capable of handling different types of constraints, such as interbasin water transfers, water supply for various purposes, and environmental requirements. Its overall objective is to produce energy to meet the country's demand at a minimum cost. Called HIDROTERM, the model integrates a database with basic hydrological and technical information to run the optimization model, and provides an interface to manage the input and output data. The optimization model uses the General Algebraic Modeling System (GAMS) package and can invoke different linear as well as nonlinear programming solvers. The optimization model was applied to the Brazilian hydrothermal system, one of the largest in the world. The system is divided into four subsystems with 127 active hydropower plants. Preliminary results under different scenarios of inflow, demand, and installed capacity demonstrate the efficiency and utility of the model. From this and other case studies in Brazil, the results indicate that the methodology developed is suitable to different applications, such as planning operation, capacity expansion, and operational rule studies, and trade-off analysis among multiple water users. DOI: 10.1061/(ASCE)WR.1943-5452.0000149. (C) 2012 American Society of Civil Engineers.
Resumo:
The assimilation of satellite estimated precipitation data can be used as an efficient tool to improve the analysis of rainfall generated by numerical models of weather forecast. The system of data assimilation used in this study is cumulus parameterization inversion based on the Kuo scheme. Reanalysis were performed using the field experiment data of the LBA Project (WETAMC and DRYtoWET-AMC), where it was possible to verify an improvement in the simulations results, since the data assimilation corrects the position and the intensity of rainfall in the numerical model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Este trabalho visa avaliar a aplicação de parâmetros convectivos (PC) para um caso de linha de instabilidade (LI) ocorrida sobre a Região Metropolitana de São Paulo (RMSP), com o intuito de demonstrar como o uso da modelagem numérica, utilizando o modelo BRAMS (Brazilian developments on the Regional Atmospheric Modeling System), pode contribuir principalmente com a obtenção de perfis atmosféricos, necessários para uma boa previsão das tempestades.
Resumo:
Durante o verão austral, diversas regiões do Brasil são afetadas por precipitação intensa, geralmente associada à Zona de Convergência do Atlântico Sul (ZCAS). O objetivo geral deste trabalho foi investigar a influência da resolução espacial e temporal dos dados de temperatura da superfície do mar (TSM) na simulação da precipitação associada à ZCAS. Foram realizadas simulações com o modelo BRAMS (Brazilian developments on the Regional Atmospheric Modeling System) para dois eventos de ZCAS, ocorridos em 1998 (El Niño) e 1999 (La Niña). A quantidade de precipitação acumulada na parte oceânica da ZCAS foi maior nos experimentos com TSM mais quente. Índices estatísticos foram utilizados para verificação do desempenho do modelo na simulação de precipitação nas regiões que compõem a ZCAS (oceânica, costeira e amazônica), com diferentes dados de TSM. A resolução espaço-temporal dos dados de TSM influencia de forma pouco significativa na representação da ZCAS pelo modelo BRAMS. O modelo é mais eficiente em identificar a ocorrência/não ocorrência de chuva do que em localizar núcleos mais intensos e seu desempenho foi superior (inferior) na região amazônica (oceânica) da ZCAS.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch-controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony-level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding-regime-mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Resumo:
Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]
Resumo:
A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.
Resumo:
A nonlinear analysis is performed for the purpose of identification of the pitch freeplay nonlinearity and its effect on the type of bifurcation of a two degree-of-freedom aeroelastic system. The databases for the identification are generated from experimental investigations of a pitch-plunge rigid airfoil supported by a nonlinear torsional spring. Experimental data and linear analysis are performed to validate the parameters of the linearized equations. Based on the periodic responses of the experimental data which included the flutter frequency and its third harmonics, the freeplay nonlinearity is approximated by a polynomial expansion up to the third order. This representation allows us to use the normal form of the Hopf bifurcation to characterize the type of instability. Based on numerical integrations, the coefficients of the polynomial expansion representing the freeplay nonlinearity are identified. Published by Elsevier Ltd.