4 resultados para Mixture design
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Combining data from multiple analytical platforms is essential for comprehensive study of the molecular phenotype (metabotype) of a given biological sample. The metabolite profiles generated are intrinsically dependent on the analytical platforms, each requiring optimization of instrumental parameters, separation conditions, and sample extraction to deliver maximal biological information. An in-depth evaluation of extraction protocols for characterizing the metabolome of the hepatobiliary fluke Fasciola hepatica, using ultra performance liquid chromatography and capillary electrophoresis coupled with mass spectroscopy is presented. The spectrometric methods were characterized by performance, and metrics of merit were established, including precision, mass accuracy, selectivity, sensitivity, and platform stability. Although a core group of molecules was common to all methods, each platform contributed a unique set, whereby 142 metabolites out of 14,724 features were identified. A mixture design revealed that the chloroform:methanol:water proportion of 15:59:26 was globally the best composition for metabolite extraction across UPLC-MS and CE-MS platforms accommodating different columns and ionization modes. Despite the general assumption of the necessity of platform-adapted protocols for achieving effective metabotype characterization, we show that an appropriately designed single extraction procedure is able to fit the requirements of all technologies. This may constitute a paradigm shift in developing efficient protocols for high-throughput metabolite profiling with more-general analytical applicability.
Resumo:
Objective Immune responses against differentiated thyroid carcinomas (DTC) have long been recognized. We aimed to investigate the role of immune cell infiltration in the progression of DTC. Design We studied 398 patients 253 with papillary and 13 with follicular thyroid cancers, as well as 132 with nonmalignant tissues. Patients and measurements Immune cell infiltration was identified using CD3, CD4, CD8, CD20, CD68 and FoxP3 immunohistochemical markers. In addition, we assessed colocalization of CD4 and IL-17 to identify Th17 lymphocytic infiltration and colocalization of CD33 and CD11b to identify infiltration of myeloid-derived suppressor cells (MDSC). Results Immune cells infiltrated malignant tissues more often than benign lesions. The presence of chronic lymphocytic thyroiditis (CLT) concurrent to DTC, CD68+, CD4+, CD8+, CD20+, FoxP3+ and Th17 lymphocytes but not MDSCs was associated with clinical and pathological features of lower tumour aggressiveness and a more favourable patient outcome. A log-rank test confirmed an association between concurrent CLT, tumour-associated macrophage infiltration, and CD8+ lymphocytes and an increased in disease-free survival, suggesting that evidence of these immune reactions is associated with a favourable prognosis. Conclusion Our data suggest that the tumour or peri-tumoural microenvironment may act to modify the observed pattern of immune response. Immune cell infiltration and the presence of concurrent CLT helped characterize specific tumour histotypes associated with favourable prognostic features.
Resumo:
Topical chemotherapy using doxorubicin, a powerful anticancer drug, can be used as an alternative with reduced systemic toxicity when treating skin cancer. The aim of the present work was to use factorial design-based studies to develop cationic solid lipid nanoparticles containing doxorubicin; further investigations into the influence of these particles on the drug's cytotoxicity and cellular uptake in B16F10 murine melanoma cells were performed. A 3(2) full factorial design was applied for two different lipid phases; one phase used stearic acid and the other used a 1:2 mixture of stearic acid and glyceryl behenate. The two factors investigated included the ratio between the lipid and the water phase and the ratio between the surfactant (poloxamer) and the co-surfactant (cetylpyridinium chloride). It was observed that the studied factors did not affect the mean diameter or the polydispersity of the obtained nanoparticles; however, they did significantly affect the zeta potential values. Optimised formulations with particle sizes ranging from 251 to 306 nm and positive zeta potentials were selected for doxorubicin incorporation. High entrapment efficiencies were achieved (97%) in formulations with higher amounts of stearic acid, suggesting that cationic charges on doxorubicin molecules may interact with the negative charges in stearic acid. Melanoma culture cell experiments showed that cationic solid lipid nanoparticles without drug were not cytotoxic to melanoma cells. The encapsulation of doxorubicin significantly increased cytotoxicity, indicating the potential of these nanoparticles for the treatment of skin cancer.
Resumo:
The Passifloraceae family is extensively used in native Brazilian folk medicine to treat a wide variety of diseases. The problem of flavonoid extraction from Passiflora was treated by application of design of experiments (DOE), as an experiment with mixture including one categorical process variable. The components of the binary mixture were: ethanol (component A) and water (component B); the categorical process variable: extraction method (factor C) was varied at two levels: (+1) maceration and (-1) percolation. ANOVA suggested a cubic model for P. edulis extraction and a quadratic model for P. alata.These results indicate that the proportion of components A and B in the mixture is the main factor involved in significantly increasing flavonoid extraction. In regard to the extraction methods, no important differences were observed, which indicates that these two traditional extraction methods could be effectively used to extract flavonoids from both medicinal plants. The evaluation of antioxidant activity of the extract by ORAC method showed that P. edulis displays twice as much antioxidant activity as P. alata. Considering that maceration is a simple, rapid and environmentally friendly extraction method, in this study, the optimized conditions for flavonoid extraction from these Passiflora species is maceration with 75% ethanol for P. edulis and 50% ethanol for P. alata.