3 resultados para Mines subsidences
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Plant mines are structures with the form of a cavity caused by consumption of host plant tissue by the insect's miner larvae. Plant mines are more common in leaves, but in Cipocereus minensis, a species in which the leaves are modified spines, the miner activity is restricted to the stem. The aim of this paper was to document the morphological and anatomical differences in the infected and uninfected stems of C. minensis due to the feeding habit of the mining agent. Fresh tissue samples of non-mined and mined young stem of C minensis were collected and examined in transverse sections. We hypothesize that the infection begins following mating when the females scratch the surface of the stem or while they feed on fruits and lay eggs, which subsequently develop into larvae, invading the cactus stem. The insect's miner larvae had mostly consumed the parenchyma tissue towards the center of the stem, and periderm formed along the entire path of the insect. This meristematic tissue or "wound periderm" is a common response for compartmentalization to isolate the damaged tissue, in this case the incubating chamber, in which the eggs will be placed. There were no signs of consumption of vascular tissue in the infested samples, further suggesting a compartmentalized infestation. The nest chamber was found in the stem pith region, with periderm surrounding an insect's miner pupa inside identified as a member of the Cerambycidae. The mining insect depends on a host plant to complete the life cycle; however, the nature of this partnership and the long-term effects of the insect on the plant tissue are unknown. The complex mechanisms by which herbivorous insects control the morphogenesis of the plant host are discussed. We propose that C. minensis has a recognition system to identify insect attack and evaluate the effectiveness of early response triggering compartmentalized defense mechanisms by protecting the injured area with a new layer of periderm.
Resumo:
Different lead sources were identified in a large uranium tailings deposit (5Mton) in the Central Region of Portugal using lead isotopic ratios obtained by ICP-QMS. These ratios helped to clarify the different sources of Pb within the tailings deposit and the impact of the tailings on the surroundings. Ten depth profiles were used for isotopic characterization of the tailings deposit; the lead background signature was evaluated in seven regional rocks (granites) and was defined as being 28 +/- 1 mg kg(-1) for Pb bulk concentration and with isotopic ratios of 1.264(2) for Pb-206/Pb-207 and 1.962(7) for Pb-208/Pb-206. In order to understand Pb isotope distribution within the tailings deposit, simple mixing/mass balance models were used to fit experimental data, involving: (1) the background component; (2) uranium ores (pitchblende) characterized by the ratios Pb-206/Pb-207 of 1.914(3) and Pb-208/Pb-206 of 1.235(2); and (3) an unknown Pb source (named 'Fonte 5') characterized by the ratios Pb-206/Pb-207 of 3.079(7) and Pb-208/Pb-206 of 0.715(1). This unknown source showed high radiogenic ratios found in the water of some tailings depth profiles located in a very specific position in the dump. In terms of isotopic characterization, 69% of the deposit material resulted from the background source, 25% from uranium minerals and only 6% from other uranium mines in the region. Finally, the environment impact revealed that the pollution was focused only in the beginning of the stream and not in the surroundings, nor in the groundwater system. The lead in the water was found only in colloidal form with a clear pitchblende signature. Those data revealed possible remobilization phenomena along the bedside and margins of the watercourse.
Resumo:
Nove amostras de minerais de ferro, provenientes de diferentes minas (jazidas) pertencentes à Vale, foram o objeto desse trabalho, que buscou correlacionar a depressão das referidas amostras com amido e carboximetil celulose versus parâmetros mineralógicos e morfológicos. O amido de milho convencional se mostrou capaz de realizar ação depressora sobre todas as amostras, exceto sobre aquelas que se mostraram mais ricas em hematita compacta (HC). Tais hematitas podem ser chamadas de "problemáticas", visto que interagem fortemente com o coletor e apresentam deficiência de serem deprimidas pelo amido, exigindo elevadas dosagens para minimização de sua tendência à flotação. Carboximetil celulose não apresentou ação depressora sobre nenhuma das amostras estudadas. A flotabilidade das amostras ricas em HC pode ser minimizada pela ação do amido de milho condicionado em pH 8,0-8,5. Testes de flotação com minério itabirítico, contendo elevado percentual de hematitas compactas de pequeno tamanho de cristal, confirmaram a redução do teor de Fe no rejeito com a utilização de amido condicionado em pH≅8.