37 resultados para Mild Cognitive Impairment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Studies have shown that platelet APP ratio (representing the percentage of 120-130 kDa to 110 kDa isoforms of the amyloid precursor protein) is reduced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). In the present study, we sought to determine if baseline APP ratio predicts the conversion from MCI to AD dementia after 4 years of longitudinal assessment. Fifty-five older adults with varying degrees of cognitive impairment (34 with MCI and 21 with AD) were assessed at baseline and after 4 years. MCI patients were re-classified according to the conversion status upon follow-up: 25 individuals retained the diagnostic status of MCI and were considered as stable cases (MCI-MCI); conversely, in nine cases the diagnosis of dementia due to AD was ascertained. The APP ratio (APPr) was determined by the Western blot method in samples of platelets collected at baseline. We found a significant reduction of APPr in MCI patients who converted to dementia upon follow-up. These individuals had baseline APPr values similar to those of demented AD patients. The overall accuracy of APPr to identify subjects with MCI who will progress to AD was 0.74 +/- A 0.10, p = 0.05. The cut-off of 1.12 yielded a sensitivity of 75 % and a specificity of 75 %. Platelet APPr may be a surrogate marker of the disease process in AD, with potential implications for the assessment of abnormalities in the APP metabolism in patients with and at risk for dementia. However, diagnostic accuracy was relatively low. Therefore, studies in larger samples are needed to determine whether APPr may warrant its use as a biomarker to support the early diagnosis of AD.
Resumo:
Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Resumo:
Objectives: Cognitive decline related to neurocysticercosis (NC) remains poorly characterized and underdiagnosed. In a cross-sectional study with a prospective phase, we evaluated cognitive decline in patients with strictly calcified form (C-NC), the epidemiologically largest subgroup of NC, and investigated whether there is a spectrum of cognitive abnormalities in the disease. Methods: Forty treatment-naive patients with C-NC aged 37.6 +/- 11.3 years and fulfilling criteria for definitive C-NC were submitted to a comprehensive cognitive and functional evaluation and were compared with 40 patients with active NC (A-NC) and 40 healthy controls (HC) matched for age and education. Patients with dementia were reassessed after 24 months. Results: Patients with C-NC presented 9.4 +/- 3.1 altered test scores out of the 30 from the cognitive battery when compared to HC. No patient with C-NC had dementia and 10 patients (25%) presented cognitive impairment-no dementia (CIND). The A-NC group had 5 patients (12.5%) with dementia and 11 patients (27.5%) with CIND. On follow-up, 3 out of 5 patients with A-NC with dementia previously still presented cystic lesions with scolex on MRI and still had dementia. One patient died and the remaining patient no longer fulfilled criteria for either dementia or CIND, presenting exclusively calcified lesions on neuroimaging. Conclusions: Independently of its phase, NC leads to a spectrum of cognitive abnormalities, ranging from impairment in a single domain, to CIND and, occasionally, to dementia. These findings are more conspicuous during active vesicular phase and less prominent in calcified stages. Neurology (R) 2012; 78: 861-866
Resumo:
A decline in cognitive ability is a typical feature of the normal aging process, and of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Although their etiologies differ, all of these disorders involve local activation of innate immune pathways and associated inflammatory cytokines. However, clinical trials of anti-inflammatory agents in neurodegenerative disorders have been disappointing, and it is therefore necessary to better understand the complex roles of the inflammatory process in neurological dysfunction. The dietary phytochemical curcumin can exert anti-inflammatory, antioxidant and neuroprotective actions. Here we provide evidence that curcumin ameliorates cognitive deficits associated with activation of the innate immune response by mechanisms requiring functional tumor necrosis factor α receptor 2 (TNFR2) signaling. In vivo, the ability of curcumin to counteract hippocampusdependent spatial memory deficits, to stimulate neuroprotective mechanisms such as upregulation of BDNF, to decrease glutaminase levels, and to modulate N-methyl- D –aspartate receptor levels was absent in mice lacking functional TNFRs. Curcumin treatment protected cultured neurons against glutamate-induced excitotoxicity by a mechanism requiring TNFR2 activation. Our results suggest the possibility that therapeutic approaches against cognitive decline designed to selectively enhance TNFR2 signaling are likely to be more beneficial than the use of anti-inflammatory drugs per se.
Resumo:
BACKGROUND: Sepsis- associated encephalopathy (SAE) is an early and common feature of severe infections. Oxidative stress is one of the mechanisms associated with the pathophysiology of SAE. The goal of this study was to investigate the involvement of NADPH oxidase in neuroinflammation and in the long-term cognitive impairment of sepsis survivors. METHODS: Sepsis was induced in WT and gp91phox knockout mice (gp91phox-/-) by cecal ligation and puncture (CLP) to induce fecal peritonitis. We measured oxidative stress, Nox2 and Nox4 gene expression and neuroinflammation in the hippocampus at six hours, twenty-four hours and five days post-sepsis. Mice were also treated with apocynin, a NADPH oxidase inhibitor. Behavioral outcomes were evaluated 15 days after sepsis with the inhibitory avoidance test and the Morris water maze in control and apocynin-treated WT mice. RESULTS: Acute oxidative damage to the hippocampus was identified by increased 4-HNE expression in parallel with an increase in Nox2 gene expression after sepsis. Pharmacological inhibition of Nox2 with apocynin completely inhibited hippocampal oxidative stress in septic animals. Pharmacologic inhibition or the absence of Nox2 in gp91phox-/- mice prevented glial cell activation, one of the central mechanisms associated with SAE. Finally, treatment with apocynin and inhibition of hippocampal oxidative stress in the acute phase of sepsis prevented the development of long-term cognitive impairment. CONCLUSIONS: Our results demonstrate that Nox2 is the main source of reactive oxygen species (ROS) involved in the oxidative damage to the hippocampus in SAE and that Nox2-derived ROS are determining factors for cognitive impairments after sepsis. These findings highlight the importance of Nox2-derived ROS as a central mechanism in the development of neuroinflammation associated with SAE.
Resumo:
Background: Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. Methods: Thirty-nine unmedicated elderly adults with major depressive disorder (MOD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e.. GSK3B ratio). Results: Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). Conclusions: Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The epidemic growth of dementia causes great concern for the society. It is customary to consider Alzheimer's disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown "vascular" risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to the vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD is similar, although the former is less effective. For prevention of dementia it is important to treat all factors aggressively, even in stroke survivors who do not show evidence of cognitive decline. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss its interaction with AD. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have implicated adiponectin and other adipocytokines in brain function, particularly in processes related to memory and cognition. Blood levels of adiponectin are reduced in patients with primary cognitive disorders, such as Alzheimer's disease and mild cognitive impairment, and in adult patients with major depression. The aim of the present study is to determine serum levels of adiponectin in a sample of elderly patients with major depressive disorder (MOD) as compared to healthy older adults, and to examine the correlations between adiponectin levels and parameters indicative of mood and cognitive state. We recruited fifty-one unmedicated outpatients with late-life depression (LLD) and 47 age-matched controls in this study. The diagnosis of MDD was made according to the DSM-IV criteria, and the severity of depressive episode was determined with the 21-item Hamilton Depression Scale (HORS). Cognitive state was ascertained with the Cambridge Cognitive Test (CAMCOG) and the Mini-Mental State Examination (MMSE). Serum concentrations of adiponectin were determined using a sandwich ELISA method. Serum levels of adiponectin were significantly reduced in individuals with LLD (F = p < 0.001). Adiponectin level remained significantly reduced in after controlling for BMI index, scores on the CAMCOG, MMSE and HDRS and educational level (p < 0.001). Adiponectin levels showed a negative correlation with HORS scores (r = -0.59, p < 0.001) and BMI index (r = -0.42, p < 0.001); and showed a positive correlation with CAMCOG (r = 0.34, p < 0.01) and MMSE scores (r = 0.20, p = 0.05). The availability of circulating adiponectin is reduced in older adults with major depression, with likely implications on cognitive and mood state. Additional studies are required to determine whether this abnormality pertains to the pathophysiology of geriatric depression per se, or is a consequence of the morbid state. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
Background: The Glial Cell-line derived neurotrophic factor (GDNF) is part of the TGF-beta superfamily and is abundantly expressed in the central nervous system. Changes in GDNF homeostasis have been reported in affective disorders. Aim: To assess serum GDNF concentration in elderly subjects with late-life depression, before antidepressant treatment, as compared to healthy elderly controls. Methods: Thirty-four elderly subjects with major depression and 37 age and gender-matched healthy elderly controls were included in this study. Diagnosis of major depression was ascertained by the SCID interview for DSM-IV and the severity of depressive symptoms was assessed by the Hamilton Depression Rating Scale (HDRS-21). Serum GDNF concentration were determined by sandwich ELISA. Results: Patients with major depression showed a significant reduction in GDNF levels as compared to healthy elderly controls (p < 0.001). Also, GDNF level was negatively correlated with HDRS-21 scores (r = -0.343, p = 0.003). Discussion: Our data provide evidence that GDNF may be a state marker of depressive episode in older adults. Changes in the homeostatic control of GDNF production may be a target to development of new antidepressant strategies. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Atrial fibrillation (AF) is a controversial risk factor for dementia. Objective: The objective of this study was to assess the association between AF and dementia in the "Sao Paulo Ageing & Health" (SPAH) study participants. Methods: SPAH is a cross-sectional, population-based study of elderly people living in a deprived neighborhood in Sao Paulo, Brazil. Dementia diagnosis was performed according to the 10/66 study group protocol based on Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Diagnosis of AF was made using a 12-lead electrocardiogram (ECG) recording, which was assessed by two cardiologists. Data on demographics and cardiovascular risk factors were also obtained. Results: Dementia was diagnosed in 66 (4.3%) and AF in 36 (2.4%) of 1,524 participants with a valid ECG. The crude odds ratio (OR) for dementia in participants with AF was 2.8 (95% confidence interval [CI]: 1.0-8.1; p=0.06) compared with individuals without AF. When analyzing data according to sex, a positive relationship was found in women (OR 4.2; 95% CI: 1.24-15.1; p=0.03). After age-adjustment, however, this association was no longer significant (OR 2.2; 95% CI: 0.6-8.9; p=0.26). Conclusion: There was no independent association between AF and dementia in this sample. The prevalence of AF may be low in this population owing to premature cardiovascular death. (Arq Bras Cardiol 2012;99(6):1108-1114)
Resumo:
The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired function or expression in AD, PD and other ND, such as amyloid beta (AB), alpha-synuclein, tau protein and neuroinfiammatory markers. Recent developments in the imaging techniques of positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to ND in vivo. This article summarizes recent findings of PET and SPECT studies using these novel methods, and discusses their potential role in the field of drug development for ND as well as future clinical applications in regard to differential diagnosis of ND and monitoring of disease progression.
Resumo:
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.