2 resultados para Microparticle

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.