35 resultados para Microalgal toxins
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including conesnails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.
Resumo:
The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.
Resumo:
Although snake infralabial glands are generally constituted of mucous cells, among dipsadines, they are much more developed and predominantly serous in nature, possibly due to the peculiar feeding habits of some species of this group, the ""goo-eaters"", which feed on soft and viscous invertebrates. We compared the morphology and histochemistry of the infralabial glands of three goo-eater species of Southeast Brazil, Atractus reticulatus, Dipsas indica and Sibynomorphus mikanii. In A. reticulatus the glands are formed by mixed acini composed of mucous and seromucous cells and in D. indica, they are composed of mucous tubules and seromucous acini. In S. mikanii the glands are organized in seromucous acini; mucous cells are restricted to the gland anterior region and to the duct lining epithelium. Ultrastructurally, secretory granule electron density varies from low to moderate, depending on their mucous or seromucous nature. The results indicate a large morphological and histochemical variation in the infralabial glands, probably reflecting differences in the secretion chemical composition and in feeding specialization among the three species. The protein content in the secretory cells can be related with the presence of toxins that can be used in chemical prey immobilization or detaching of snails from their shells. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.
Resumo:
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from L-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4' sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019331, 1245-1262, 2012.
Resumo:
Intra-and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton-and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's F-S parameters. In addition, high values of haplotype diversity ((H) over cap) and low values of nucleotide diversity (pi), combined with a high number of low frequency haplotypes and values of theta(pi)<theta(W), suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.
Resumo:
This study describes the spatio-temporal distribution, population biology, and diet of the puffer fish Lagocephalus laevigatus in Caraguatatuba Bay, south-eastern Brazil. Monthly samples were taken between August 2003 and October 2004 by trawls in two areas, south and north, at depths of 1 to 4 m. The fish were measured and their sex and reproductive stage determined. The abundance of this species was compared between areas and among months, and the items in the diet were identified and quantified. Lagocephalus laevigatus was rare in Caraguatatuba Bay, where only 199 small individuals (4.8 to 15.4 cm) were obtained in the entire study period, suggesting that this species uses the estuary as a nursery. None of the specimens of L. laevigatus captured in Caraguatatuba Bay were sexually mature. Higher densities of L. laevigatus in the bay were recorded in the south area and between October and December 2003, i.e. in the spring, suggesting that spawning may occur from late winter to spring (August through to November). The diet items consumed by L. laevigatus in Caraguatatuba Bay were, as expected from the current literature, crustaceans, mainly amphipods, and fish. However, the most-consumed item was the sea whip Leptogorgia setacea (Cnidaria). This feeding habit may be related to the presence of toxins (tetrodotoxin and saxitoxin) that are frequently found in the skin and viscera of L. laevigatus, which may be sequestered from the sea whip, which possibility still needs to be specifically evaluated.
Resumo:
The first autochthonous case of American cutaneous leishmaniasis was reported in the Federal District in 1980, and the species involved in this type of leishmaniasis was unknown. This study aimed to identify the species that causes the disease in the Federal District and to investigate its clinical and epidemiological aspects. Between 2000 and 2007, 71 autochthonous cases of leishmaniasis were reported in the Federal District. Leishmania species were identified by means of direct immunofluorescence reactions using monoclonal antibodies and restriction fragment length polymorphism. The species of 40 (56.33%) out of 71 samples were identified. Thirty-six (90%) were identified as Leishmania (Viannia) braziliensis and four (10%) were identified as Leishmania (Leishmania) amazonensis. In this area, the disease had clinical and epidemiological characteristics similar to those found in other Brazilian regions.
Resumo:
The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete's foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete's foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host's immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.
Resumo:
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Phoneutria nigriventer spider bite causes priapism, an effect attributed to the peptide toxins Tx2-5 and Tx2-6 and involving nitric oxide. Tx2-6 (MW = 5287) is known to delay the inactivation of Sodium channels in the same fashion as many other venom toxins. In the present study we evaluated the i.p. dose that induces priapism and the other symptoms in mice. Animals killed by the toxin or crude venom (0.85 mg/kg) were autopsied and a pathological study of brain, lung, kidney, liver and heart was undertaken using standard techniques. The same protocol was employed with animals injected with crude venom. Results showed that priapism is the first sign of intoxication, followed by piloerection, abundant salivation and tremors. An i.p. injection of about 0.3 mu g/kg induced only priapism with minimal side-effects. The most remarkable histological finding was a general vascular congestion in all organs studied. Penis showed no necrosis or damage. Lungs showed vascular congestion and alveolar hemorrhage. Heart showed also sub-endothelial hemorrhage. Brain showed only a mild edema and vascular congestion. Results obtained with crude venom closely resemble those of purified toxin. We conclude that Tx2-6 have profound effects on the vascular bed especially in lungs and heart, which may be the cause of death. Interestingly brain tissue was less affected and the observed edema may be attributed to respiratory impairment. To the best of our knowledge this is the first histopathological investigation on this toxin and venom suggesting a possible cause of death. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clostridium perfringens is an anaerobic Gram-positive bacterium known as common pathogen for humans, for domestic and wildlife animals. Although infections caused by C. perfringens type C and A in swine are well studied, just a few reports describe the genetic relationship among strains in the epidemiological chain of swine clostridioses, as well as the presence of the microorganism in the slaughterhouses. The aim of the present study was to isolate C. perfringens from feces and carcasses from swine slaughterhouses, characterize the strains in relation to the presence of enterotoxin, alpha, beta, epsilon, iota and beta-2 toxins genes. using polymerase chain reaction (PCR) and comparing strains by means of Pulsed field gel electrophoresis (PFGE). Clostridium perfringens isolation frequencies in carcasses and finishing pig intestines were of 58.8% in both types of samples. According to the polymerase chain reaction assay, only, alfa toxin was detected, being all isolates also negative to enterotoxin and beta2 toxin. Through PFGE technique, the strains were characterized in 35 pulsotypes. In only one pulsotype, the isolate from carcass sample was grouped with fecal isolate of the same animal, suggesting that the risk of cross-contamination was low. Despite the high prevalence of C. perfringens in swine carcasses from the slaughterhouses assessed, the risk of food poisoning to Brazilian pork consumers is low, since all strains were negative to cpe-gene, codifying enterotoxin.
Resumo:
Background: Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings: Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some genderrelated differences. Conclusions/Significance: We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.
Resumo:
Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.