4 resultados para Methodology of the conceptual elaboration ferreiriana

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the temperature and reaction time on the sulfation process of a dolomite is investigated in this paper. The sulfation effectiveness was evaluated and correlated with changes in the physical characteristics of a Brazilian dolomite during the reactive process. Calcination and sulfation experiments were performed under isothermal conditions for dolomite samples with average particle sizes of 545 mu m at temperatures of 750 degrees C, 850 degrees C and 950 degrees C at different times of sulfation. Thermogravimetric tests were applied to establish the reactivity variation of the dolomite in function of the time in the sulfation reaction and evaluate the methodology of the samples preparation. Porosimetry tests were performed to study the pore blockage of dolomite during the sulfation reaction. The highest values of BET surface area were 25.55 m(2)/g, 29.55 m(2)/g and 12.62 m(2)/g for calcined samples and after their sulfation processes, conversions of 51.5%, 61.9% and 42.8% were obtained at 750 degrees C, 850 degrees C and 950 degrees C, respectively. Considering the process as a whole, the best fit was provided by a first-order exponential decay equation. Moreover, the results have shown that it is possible to quantify the decreasing in the dolomite reactivity for sulfur dioxide sorption and understand the changes in the behavior of the sulfation process of limestones when applied to technologies, as fluidized bed combustor, in which sulfur dioxide is present. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality concepts represent one of the important factors for the success of organizations and among these concepts the stabilization of the production process contributes to the improvement, waste reduction and increased competitiveness. Thus, this study aimed to evaluate the production process of solid wood flooring on its predictability and capacity, based on its critical points. Therefore, the research was divided into three stages. The first one was the process mapping of the company and the elaboration of flowcharts for the activities. The second one was the identification and the evaluation of the critical points using FMEA (Failure Mode and Effect Analysis) adapted methodology. The third one was the evaluation of the critical points applying the statistical process control and the determination of the process capability for the C-pk index. The results showed the existence of six processes, two of them are critical. In those two ones, fifteen points were considered critical and two of them, related with the dimension of the pieces and defects caused by sandpaper, were selected for evaluation. The productive process of the company is unstable and not capable to produce wood flooring according to the specifications and, therefore these specifications should be reevaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.