16 resultados para Metallic-dye Nanocluster
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Chalcogenolate mediated Michael-aldol cascade reactions consists of a very efficient route to multi-functionalized gamma-hydroxichalcogenides. Although, when selenolates are employed, these gamma-hydroxichalcogenides can be readily converted into the corresponding Morita-Baylis-Hillman adducts by oxidative elimination of the selenium moiety. In this context, herein we present a complete study on the scope and limitations of this reaction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]
Resumo:
Introduction: Knowing the microbiota that colonizes orthodontic appliances is important for planning strategies and implementing specific preventive measures during treatment. The purpose of this clinical trial was to evaluate in vivo the contamination of metallic orthodontic brackets with 40 DNA probes for different bacterial species by using the checkerboard DNA-DNA hybridization (CDDH) technique. Methods: Eighteen patients, 11 to 29 years of age having fixed orthodontic treatment, were enrolled in the study. Each subject had 2 new metallic brackets bonded to different premolars in a randomized manner. After 30 days, the brackets were removed and processed for analysis by CDDH. Data on bacterial contamination were analyzed descriptively and with the Kruskal-Wallis and Dunn post tests (alpha = 0.05). Forty microbial species (cariogenic microorganisms, bacteria of the purple, yellow, green, orange complexes, "red complex + Treponema socranskii," and the cluster of Actinomyces) were assessed. Results: Most bacterial species were present in all subjects, except for Streptococcus constellatus, Campylobacter rectus, Tannerella forsythia, T socranskii, and Lactobacillus acidophillus (94.4%), Propionibacterium acnes I and Eubacterium nodatum (88.9%), and Treponema denticola (77.8%). Among the cariogenic microorganisms, Streptococcus mutans and Streptococcus sobrinus were found in larger numbers than L acidophillus and Lactobacillus casei (P < 0.001). The periodontal pathogens of the orange complex were detected in larger numbers than those of the "red complex + T socranskii" (P < 0.0001). Among the bacteria not associated with specific pathologies, Veillonella parvula (purple complex) was the most frequently detected strain (P < 0.0001). The numbers of yellow and green complex bacteria and the cluster of Actinomyces were similar (P > 0.05). Conclusions: Metallic brackets in use for 1 month were multi-colonized by several bacterial species, including cariogenic microorganisms and periodontal pathogens, reinforcing the need for meticulous oral hygiene and additional preventive measures to maintain oral health in orthodontic patients. (Am J Orthod Dentofacial Orthop 2012;141:24-9)
Resumo:
Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The purpose of this randomized clinical study was to evaluate the presence of the periodontal pathogen Aggregatibacter actinomycetemcomitans on metallic brackets and the effectiveness of a 0.12% chlorhexidine digluconate mouthwash in inhibiting this microorganism. Methods: The study involved 35 patients of both sexes having orthodontic treatment with fixed appliances between the ages of 14 and 22 years, randomized into 2 groups: experimental (n = 17) and control (n = 18). Two new metallic brackets were placed on the patients' premolars, and the subjects rinsed with a solution of 0.12% chlorhexidine digluconate or a placebo solution twice a week for 30 days. After that, the brackets were removed and underwent microbiologic analysis with the checkerboard DNA-DNA hybridization technique. Data were analyzed by using the Student t, Fisher exact, and Mann-Whitney tests at the significance level of 5%. Results: The results showed that A actinomycetemcomitans was present in all brackets from the subjects in the control group vs 83% of the subjects who rinsed with chlorhexidine digluconate (P<0.0001). There were also significantly lower levels of this species in the chlorhexidine digluconate group compared with the control group (P = 0.0003). Conclusions: We concluded that 0.12% chlorhexidine digluconate rinsing, twice a week for 30 days during orthodontic treatment, is effective in reducing the presence and levels of A actinomycetemcomitans on metallic brackets. (Am J Orthod Dentofacial Orthop 2012;142:481-6)
Resumo:
The present work describes the electrochemical reduction of the azo dye Sudan III in methanol/0.01 mol l(-1) Bu4NBF4 at applied potential of -1.2V, which promotes 98% discoloration of the commercial sample. The reduction products were analyzed by high performance liquid chromatography, after optimized conditions for 20 aromatic amines with carcinogenic potentiality. The harmful compounds such as: aniline, benzidine, o-toluidine, 2,6-dimethylaniline, 4,4'-oxydianiline, 4,4'-metileno-bis-2-methylaniline and 4-aminobiphenyl are formed after azo bond cleavage. The electrochemical reduction is compared with chemical reduction by using sodium thiosulfate. Our findings illustrates that commercial Sudan III under reductive condition can forms a number of products, which some are known active genotoxins. The technique could be used to mimic important redox reactions in human metabolism or environment, highlighting the possible formation of by-products more toxic than the original dyes.
Resumo:
This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.
Resumo:
Introduction: The objective of the study was to evaluate the ability of large-volume cone-beam computed tomography (CBCT) to detect horizontal root fracture and to test the influence of a metallic post. Methods: Through the examination of 40 teeth by large-volume CBCT (20-cm height and 15-cm diameter cylinder) at 0.2-mm voxel resolution, 2 observers analyzed the samples for the presence and localization of horizontal root fracture. Results: The values of accuracy in the groups that had no metallic post ranged from 33%-68%, whereas for the samples with the metallic post, values showed a wide variation (38%-83%). Intraobserver agreement showed no statistically significant difference between the groups with/without metallic post; both ranged from very weak to weak (kappa, 0.09-0.369). Conclusions: The low accuracy and low intraobserver and interobserver agreement reflect the difficulty in performing an adequate diagnosis of horizontal root fractures through a large-volume CBCT by using a small voxel reconstruction. (J Endod 2012;38:856-859)
Resumo:
The objective of this study was to compare the bone repair along a mandibular body osteotomy stabilized with 2.0 mm absorbable and metallic systems. 12 male, adult mongrel dogs were divided into two groups (metallic and absorbable) and subjected to unilateral osteotomy between the mandibular third and fourth premolars, which was stabilized by applying two 4-hole plates. At 2 and 18 weeks, three dogs from each group were killed and the osteotomy sites were removed and divided equally into three parts: the upper part was labelled the tension third (TT), the lower part the compression third (CT), and the part between the TT and CT the intermediary third (IT). Regardless of the treatment system, union between the fragments was observed at 18 weeks and the CT showed more advanced stages of bone repair than the TT. Histometric analysis did not reveal any significant differences among the 3 parts or systems in the distance between bone fragments at 2 weeks. Although at 18 weeks the proportions of newly formed bone did not differ among TT, IT and CT, significantly enhanced bone formation was observed in all sections for the metallic group. The patterns of repair were distinct between treatments.
Resumo:
Erythrosine (ErB) is a xanthene and an US Food and Drug Administration approved dye used in foods, drugs and cosmetics. Although its utilization is permitted, ErB is described as inhibitor of enzymes and protein-protein interactions and is toxic to pituitary and spermatogenesis processes. However, the genotoxicity and mutagenicity of ErB is inconclusive in the literature. This study aimed to analyze the genotoxicity of this dye using the alkaline comet assay and is the first investigation to evaluate ErB mutagenicity using the cytokinesis block micronucleus cytome (CBMN-Cyt) assay in HepG2 cells. These cells were chosen because they produce phase I and phase II enzymes that can mimic in vivo metabolism. The cells were treated with seven concentrations (0.1-70.0 mu g mL(-1)) of ErB, and the results showed genotoxicity at the two highest concentrations and mutagenicity at six concentrations. Furthermore, as micronuclei result from clastogenic and aneugenic processes, while comet assay is often considered more sensitive and detects DNA single strain breaks, we suggest that an aneugenic is responsible for the observed damage. Although ErB is approved for use in the food, cosmetic and pharmaceutical industries, it must be used carefully because it damages the DNA structure. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Sevenfold enhancement of photoconversion efficiency was achieved by incorporation of peripheral ruthenium complexes to a porphyrin dye, generating supramolecular effects capable of playing several key roles (e.g., transferring energy to, inhibiting aggregation, and accepting the hole generated in the porphyrin center after electron injection), providing new insights for the design of better DSSC photosensitizers.
Resumo:
The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.
Resumo:
The new triazene-porphyrin dye 5-(1-(4-phenyl)-3-(4-nitrophenyl)triazene)-10,15,20-triphenylporphyrin, encompassing a reactive protonated triazene moiety, was prepared starting from meso-tetraphenylporphyrin (H2TPP), first converting it to the 5-(4-nitrophenyl)-10,15,20-triphenylporphyrin, then reducing to the 5-(4-aminophenyl)-10,15,20-tri(phenyl) porphyrin intermediate, and reacting with the diazonium salt of 4-nitroaniline; and characterized by spectroscopic and electrochemical methods. The absorption spectrum of the neutral species resembled the sum of H2TPP and of 1,3-bis(4-nitrophenyl) triazene spectrum, but the deprotonated anionic species showed more delocalized frontier orbitals, behaving as a push-pull system exhibiting triazenide-to-porphyrin charge-transfer transitions.
Resumo:
The purpose of the present study was to evaluate in vivo the failure rate of metallic brackets bonded with two orthodontic composites. Nineteen patients with ages ranging from 10.5 to 38.7 years needing corrective orthodontic treatment were selected for study. The enamel surfaces from second premolars to second premolars were treated with Transbond Plus-Self Etching Primer (3M Unitek). Next, 380 orthodontic brackets were bonded on maxillary and mandibular teeth, as follows: 190 with Transbond XT composite (3M Unitek) (control) and 190 with Transbond Plus Color Change (3M Unitek) (experimental) in contralateral quadrants. The bonded brackets were light cured for 40 s, and initial alignment archwires were inserted. Bond failure rates were recorded over a six-month period. At the end of the evaluation, six bond failures occurred, three for each composite. Kaplan-Meyer method and log-rank test (Mantel-Cox) was used for statistical analysis, and no statistically significant difference was found between the materials (p=0.999). Both Transbond XT and Transbond Plus Color Change composites had low debonding rates over the study period.
Resumo:
OBJECTIVES: The aim of this study was to evaluate in vivo the bonding of metallic orthodontic brackets with different adhesive systems. MATERIAL AND METHODS: Twenty patients (10.5-15.1 years old) who had sought corrective orthodontic treatment at a University Orthodontic Clinic were evaluated. Brackets were bonded from the right second premolar to the left second premolar in the upper and lower arches using: Orthodontic Concise, conventional Transbond XT, Transbond XT without primer, and Transbond XT associated with Transbond Plus Self-etching Primer (TPSEP). The 4 adhesive systems were used in all patients using a split-mouth design; each adhesive system was used in one quadrant of each dental arch, so that each group of 5 patients received the same bonding sequence. Initial archwires were inserted 1 week after bracket bonding. The number of bracket failures for each adhesive system was quantified over a 6-month period. RESULTS: The number of debonded brackets was: 8- Orthodontic Concise, 2- conventional Transbond XT, 9- Transbond XT without primer, and 1- Transbond XT + TPSEP. By using the Kaplan-Meier methods, statistically significant differences were found between the materials (p=0.0198), and the Logrank test identified these differences. Conventional Transbond XT and Transbond XT + TPSEP adhesive systems were statistically superior to Orthodontic Concise and Transbond XT without primer (p<0.05). There was no statistically significant difference between the dental arches (upper and lower), between the dental arch sides (right and left), and among the quadrants. CONCLUSIONS: The largest number of bracket failures occurred with Orthodontic Concise and Transbond XT without primer systems and few bracket failures occurred with conventional Transbond XT and Transbond XT+TPSEP. More bracket failures were observed in the posterior region compared with the anterior region.