11 resultados para Metal-based catalysts

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale- up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of support on the properties of rhodium and cobalt-based catalysts for ethanol steam reforming was studied in this work, by comparing the use of magnesia, alumina and Mg-Al oxide (obtained from hydrotalcite) as supports. It was found that metallic rhodium particles with around 2.4-2.6 nm were formed on all supports, but Mg-Al oxide led to the narrowest particles size distribution; cobalt was supposed to be located on the support, affecting its acidity. Rhodium interacts strongly with the support in the order: alumina> Mg-Al oxide > magnesia. The magnesium-containing catalysts showed low ethene selectivity and high hydrogen selectivity while the alumina-based ones showed high ethene selectivity, assigned to the Lewis sites of alumina. The Mg-Al oxide-supported rhodium and cobalt catalyst was the most promising sample to produce hydrogen by ethanol reforming, showing the highest hydrogen yield, low ethene selectivity and high specific surface area during reaction. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale-up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350 degrees C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm(-3), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effect of the relationship between particle size (d), inter-particle distance (x(i)), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x(i)/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x(i)/d can be always obtained. For y >= 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x(i)/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x(i)/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x(i)/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copolymers of norbornene (NBE) with norbomadiene (NBD) were obtained via ROMP with [RuCl2(PPh3)(2)(L)] type complexes as initiators (1 for L = piperidine and 2 for L = 3,5-Me(2)piperidine). The reactions were performed using a fixed quantity of NBE (5000 equivalents/[Ru]) for different concentrations of NBD (500, 1000, 1500 and 2000 equivalents/ [Ru]) in CHCl3, initiated with ethyl diazoacetate at room temperature. The presence of NBD in the NBE chains was characterized by H-1 and C-13 NMR. Whereas the copolymer microstructure was influenced neither by the NBD quantity nor by the initiator type, the N-n and PDI values were improved when increasing the NBD quantity in the medium. When raising the NBD amount, DMA results indicated increased cross-linking with increasing T-g and E ' storage modulus, as well as the fact that SEM micrographs indicated decreased pore sizes in the porous isolated copolymers. (C) 2011 Elsevier Ltd. All rights reserved.