29 resultados para Metabolic flexibility
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background & aims: Altered intestinal permeability has been shown to be associated with metabolic alterations in animal models of obesity, but not in humans. The aim of this study was to assess intestinal permeability in obese women and verify if there is any association with anthropometric measurements, body composition or biochemical variables. Methods: Twenty lean and twenty obese females participated in the study. Anthropometric measurements, body composition and blood pressure were assessed and biochemical analyses were performed. Administration of lactulose and mannitol followed by their quantification in urine was used to assess the intestinal permeability of volunteers. Results: The obese group showed lower HDL (p < 0.05), higher fasting glucose, insulin, HOMA index and lactulose excretion than the lean group (p < 0.05), suggesting increased paracellular permeability. Lactulose excretion showed positive correlation (p < 0.05) with waist and abdominal circumference. Blood insulin and the HOMA index also increased with the increase in mannitol and lactulose excretion and in the L/M ratio (p < 0.05). L/M ratio presented a negative correlation with HDL concentration (p < 0.05). Conclusions: We demonstrated that intestinal permeability parameters in obese women are positively correlated with anthropometric measurements and metabolic variables. Therapeutic interventions focused on intestine health and the modulation of intestinal permeability should be explored in the context of obesity. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background: Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods: Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-alpha and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age. Results: MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-alpha were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 +/- 2, H: 42 +/- 2, C: 45 +/- 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%). Conclusions: MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Resumo:
The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB) catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN) method were 9.0x10(7) cells/mL at the beginning of the assay and 8.0x10(5) cells/mL after 738 hours of operation.
Resumo:
Background: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology: Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4 +/- 9 years received dexamethasone (mean 0.27 +/- 0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 mu g/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI >= 30 kg/m(2). NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m(2) +/- 5.3 vs. 26 kg/m(2) +/- 5.3, respectively) and waist circumference (89 cm +/- 12.7 vs. 81 cm +/- 13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk patients, allowing for the establishment of personalized treatment and the avoidance of long-term adverse consequences.
Resumo:
Background: Prevalence of individuals with a high cardiovascular risk is elevated in elderly populations. Although metabolic syndrome (MS) increases cardiovascular risk, information is scarce on the prevalence of MS in the elderly. In this study we assessed MS prevalence in a population of elderly Japanese-Brazilians using different MS definitions according to waist circumference cutoff values. Material/Methods: We studied 339 elderly subjects, 44.8% males, aged between 60 to 88 years (70.1 +/- 6.8). MS was defined according to criteria proposed by the Joint Interim Statement in 2009. As waist circumference cutoff point values remain controversial for Asian and Japanese populations, we employed 3 different cutoffs that are commonly used in Japanese epidemiological studies: 1) >90 cm for men and >80 cm for women; 2) >85 cm for men and >90 cm for women; 3) >85 cm for men and >80 cm for women. Results: MS prevalence ranged from 59.9% to 65.8% according to the different definitions. We observed 90% concordance and no statistical difference (p>0.05) in MS prevalence between the 3 definitions. MS diagnosis according to all 3 cutoff values was found in 55.8% of our population, while in only 34.2% was MS discarded by all cutoffs. The prevalence of altered MS components was as follows: arterial blood pressure 82%, fasting glycemia 65.8%, triglyceride 43.4%, and HDL-C levels 36.9%. Conclusions: Elderly Japanese-Brazilians present high metabolic syndrome prevalence independent of waist circumference cutoff values. Concordance between the 3 definitions is high, suggesting that all 3 cutoff values yield similar metabolic syndrome prevalence values in this population.
Resumo:
Over the last few years, Business Process Management (BPM) has achieved increasing popularity and dissemination. An analysis of the underlying assumptions of BPM shows that it pursues two apparently contradicting goals: on the one hand it aims at formalising work practices into business process models; on the other hand, it intends to confer flexibility to the organization - i.e. to maintain its ability to respond to new and unforeseen situations. This paper analyses the relationship between formalisation and flexibility in business process modelling by means of an empirical case study of a BPM project in an aircraft maintenance company. A qualitative approach is adopted based on the Actor-Network Theory. The paper offers two major contributions: (a) it illustrates the sociotechnical complexity involved in BPM initiatives; (b) it points towards a multidimensional understanding of the relation between formalization and flexibility in BPM projects.
Resumo:
OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 +/- 0.2 vs. C: 4.5 +/- 0.2 mg/dl/min), hypertension (mean blood pressure, F: 118 +/- 3 vs. C: 104 +/- 4 mmHg) and obesity (F: 0.31 +/- 0.001 vs. C: 0.29 +/- 0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.
Resumo:
OBJECTIVE: To assess the presence of metabolic disorders in elderly men with urolithiasis. METHODS: We performed a case-control study. The inclusion criteria were as follows: (1) men older than 60 years of age and either (2) antecedent renal colic or an incidental diagnosis of urinary lithiasis after age 60 (case arm) or (3) no antecedent renal colic or incidental diagnosis of urolithiasis (control arm). Each individual underwent an interview, and those who were selected underwent all clinical protocol examinations: serum levels of total and ionized calcium, uric acid, phosphorus, glucose, urea, creatinine and parathyroid hormone, urine culture, and analysis of 24-hour urine samples (levels of calcium, citrate, creatinine, uric acid and sodium, pH and urine volume). Each case arm patient underwent two complete metabolic urinary investigations, whereas each control arm individual underwent one examination. ClinicalTrials.gov: NCT01246531. RESULTS: A total of 51 subjects completed the clinical investigation: 25 in the case arm and 26 in the control arm. In total, 56% of the case arm patients had hypocitraturia (vs. 15.4% in the control arm; p = 0.002). Hypernatriuria was detected in 64% of the case arm patients and in 30.8% of the controls (p = 0.017). CONCLUSION: Hypocitraturia and hypernatriuria are the main metabolic disorders in elderly men with urolithiasis.
Resumo:
The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Resumo:
Objective Metabolic syndrome (MetS) is highly prevalent in rheumatic diseases and is recognized as a new independent cardiovascular risk factor. This study was undertaken to determine the clinical significance of MetS in patients with primary antiphospholipid syndrome (APS). Methods Seventy-one primary APS patients and 73 age- and sex-matched healthy controls were included. Serum samples were tested for lipid profile, Lp(a), glucose, insulin, thyroid-stimulating hormone, free T4, erythrocyte sedimentation rate, C-reactive protein level, and uric acid. MetS was defined by the International Diabetes Federation criteria, and insulin resistance was established using the homeostasis model assessment index. Results The prevalence of MetS was 33.8%, and further comparison between primary APS patients with and without MetS revealed that the former had a higher frequency of arterial events (79.2% versus 42.6%; P = 0.003), angina (29.2% versus 2.1%; P = 0.002), and positive lupus anticoagulant antibody (95.8% versus 76.6%; P = 0.049). In addition, primary APS patients with MetS, as expected, had a higher prevalence of cardiovascular risk factors. On multivariate analysis, only MetS was independently associated with arterial events in primary APS. Conclusion Coexistence of primary APS and MetS seems to identify a subgroup of patients with higher risk of arterial events, suggesting that MetS may aggravate existing endothelial abnormalities of primary APS.
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. (Endocrinology 153: 2178-2188, 2012)
Resumo:
Background: Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents. Methods: The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method. Results: Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia. Conclusion: Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.
Resumo:
The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. J. Cell. Biochem. 113: 174183, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.