13 resultados para Membrane Bound Proteins

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protozoan parasites cause thousands of deaths each year in developing countries. The genome projects of these parasites opened a new era in the identification of therapeutic targets. However, the putative function could be predicted for fewer than half of the protein-coding genes. In this work, all Trypanosoma cruzi proteins containing predicted transmembrane spans were processed through an automated computational routine and further analyzed in order to assign the most probable function. The analysis consisted of dissecting the whole predicted protein in different regions. More than 5,000 sequences were processed, and the predicted biological functions were grouped into 19 categories according to the hits obtained after analysis. One focus of interest, due to the scarce information available on trypanosomatids, is the proteins involved in signal-transduction processes. In the present work, we identified 54 proteins belonging to this group, which were individually analyzed. The results show that by means of a simple pipeline it was possible to attribute probable functions to sequences annotated as coding for "hypothetical proteins.'' Also, we successfully identified the majority of candidates participating in the signal-transduction pathways in T. cruzi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection is a worldwide health problem that may evolve to cirrhosis and hepatocellular carcinoma. Incompletely understood immune system mechanisms have been associated with impaired viral clearance. The nonclassical class I human leukocyte antigen G (HLA-G) molecule may downregulate immune system cell functions exhibiting well-recognized tolerogenic properties. HCV genotype was analyzed in chronic HCV-infected patients. Because HLA-G expression may be induced by certain viruses, we evaluated the presence of HLA-G in the liver microenvironment obtained from 89 biopsies of patients harboring chronic HCV infection and stratified according to clinical and histopathological features. Overall, data indicated that HCV genotype 1 was predominant, especially subgenotype 1a, with a prevalence of 87%. HLA-G expression was observed in 45(51%) liver specimens, and it was more frequent in milder stages of chronic hepatitis (67.4%) than in moderate (27.8%; p = 0.009) and severe (36.0%; p = 0.021) stages of the disease. Altogether, these results suggest that the expression of HLA-G in the context of HCV is a complex process modulated by many factors, which may contribute to an immunologic environment favoring viral persistence. However, because the milder forms predominantly expressed HLA-G, a protective role of this molecule may not be excluded. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 degrees C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbapenem resistance amongst Acinetobacter spp. has been increasing in the last decade. This study evaluated the outer membrane protein (OMP) profile and production of carbapenemases in 50 carbapenem-resistant Acinetobacter spp. isolates from bloodstream infections. Isolates were identified by API20NE. Minimum inhibitory concentrations (MICs) for carbapenems were determined by broth microdilution. Carbapenemases were studied by phenotypic tests, detection of their encoding gene by polymerase chain reaction (PCR) amplification, and imipenem hydrolysis. Nucleotide sequencing confirming the enzyme gene type was performed using MegaBACE 1000. The presence of OMPs was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and PCR. Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). All isolates were resistant to carbapenems. Moreover, 98% of the isolates were positive for the gene encoding the enzyme OXA-51-like, 18% were positive for OXA-23-like (only one isolate did not show the presence of the insertion sequence ISAba1 adjacent to this gene) and 76% were positive for OXA-143 enzyme. Five isolates (10%) showed the presence of the IMP-1 gene. Imipenem hydrolysing activity was detected in only three strains containing carbapenemase genes, comprising two isolates containing the bla(IMP) gene and one containing the bla(OXA-51/OXA-23-like) gene. The OMP of 43 kDa was altered in 17 of 25 strains studied, and this alteration was associated with a high meropenem MIC (256 mu g/mL) in 5 of 7 strains without 43 kDa OMP. On the other hand, decreased OMP 33-36 kDa was found in five strains. The high prevalence of OXA-143 and alteration of OMPs might have been associated with a high level of carbapenem resistance. (C) 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yolk sac is an embryonic membrane that is essential for the embryo's initial survival in many mammals. It also plays an important role in the production of proteins necessary for development. We studied proteins of the yolk sac in bovine embryos at up to 40 days of gestation. We examined the yolk sac of 17 bovine embryos at different gestational periods, measuring a-fetoprotein, alpha-1-antitrypsin, and transferrin. This experiment was carried out by Western blot technique, associated with electrophoresis on a 6% sodium dodecyl sulfate polyacrylamide gel. Mouse monoclonal antibody anti-human-alpha-fetoprotein, mouse antibody anti-human-transferrin and rabbit polyclonal anti-human-alpha-1-antitrypsin were used as primary antibodies, and conjugated peroxidase as a secondary antibody. We detected the three proteins in some of the yolk sac samples; however, the bands in some specimens (samples) were weak, maybe a result of poor antigen-antibody reaction, since the antibodies used in this study were not specific to bovine proteins. The fact that weak bands appeared might be due to a weak cross-reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptospira, the causative agent of leptospirosis, interacts with several host molecules, including extracellular matrix components, coagulation cascade proteins, and human complement regulators. Here we demonstrate that acquisition of factor H (FH) on the Leptospira surface is crucial for bacterial survival in the serum and that these spirochetes, besides interacting with FH, FH related-1, and C4b binding protein (C4BP), also acquire FH like-1 from human serum. We also demonstrate that binding to these complement regulators is mediated by leptospiral immunoglobulin-like (Lig) proteins, previously shown to interact with fibronectin, laminin, collagen, elastin, tropoelastin, and fibrinogen. Factor H binds to Lig proteins via short consensus repeat domains 5 and 20. Competition assays suggest that FH and C4BP have distinct binding sites on Lig proteins. Moreover, FH and C4BP bound to immobilized Ligs display cofactor activity, mediating C3b and C4b degradation by factor I. In conclusion, Lig proteins are multifunctional molecules, contributing to leptospiral adhesion and immune evasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 mu M) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 mu M enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in post-translational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Heavy metal Resistance-Nodulation-Division (HME-RND) efflux systems help Gram-negative bacteria to keep the intracellular homeostasis under high metal concentrations. These proteins constitute the cytoplasmic membrane channel of the tripartite RND transport systems. Caulobacter crescentus NA1000 possess two HME-RND proteins, and the aim of this work was to determine their involvement in the response to cadmium, zinc, cobalt and nickel, and to analyze the phylogenetic distribution and characteristic signatures of orthologs of these two proteins. Results Expression assays of the czrCBA operon showed significant induction in the presence of cadmium and zinc, and moderate induction by cobalt and nickel. The nczCBA operon is highly induced in the presence of nickel and cobalt, moderately induced by zinc and not induced by cadmium. Analysis of the resistance phenotype of mutant strains showed that the ΔczrA strain is highly sensitive to cadmium, zinc and cobalt, but resistant to nickel. The ΔnczA strain and the double mutant strain showed reduced growth in the presence of all metals tested. Phylogenetic analysis of the C. crescentus HME-RND proteins showed that CzrA-like proteins, in contrast to those similar to NczA, are almost exclusively found in the Alphaproteobacteria group, and the characteristic protein signatures of each group were highlighted. Conclusions The czrCBA efflux system is involved mainly in response to cadmium and zinc with a secondary role in response to cobalt. The nczCBA efflux system is involved mainly in response to nickel and cobalt, with a secondary role in response to cadmium and zinc. CzrA belongs to the HME2 subfamily, which is almost exclusively found in the Alphaproteobacteria group, as shown by phylogenetic analysis. NczA belongs to the HME1 subfamily which is more widespread among diverse Proteobacteria groups. Each of these subfamilies present distinctive amino acid signatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes.