11 resultados para Median Sedimentary Basin

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Parana basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern Sao Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km(2) in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Parana basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (>190 m(3)/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, some TDEM (Time Domain Electromagnetic) results at USP (University of Sao Paulo) campus in Sao Paulo city, Brazil, are presented. The data were acquired focusing on two mains objectives: (i) to map geoelectrical stratigraphy of Sao Paulo sedimentary basin, emphasizing on hydrogeological studies about sedimentary and crystalline aquifers, and (ii) to analyze the viability of TDEM data acquisition use in urban environment. The study area is located in Sao Paulo basin border, characterized by Resende and Sao Paulo formations, which are constituted by sand-clays sediments over a granite-gneissic basement. Two equipments were used in order to acquire database: Protem47 (low power), and Protem57-MK2 (high power). Capacitive noise affect obtained data with Protem47 due to the presence of metal pipes buried at IAG/USP (Institute of Astronomy, Geophysics, and Atmospheric Science) test site at USP. On the other hand, capacitive noise did not affect acquired data with Protem57-MK2, and the data present high signal to noise ratio. Surveys helped in determining sedimentary and crystalline aquifers, characterized by a fracture zone with water inside basin basement (conductive zone). Results show good agreement with local geology obtained from lithological boreholes located in the study areas. Moreover, it shows that TDEM method can be used in urban environments with a countless potential in hydrogeological studies, offering great reliability. Studies showed that main TDEM-method limitation at USP was the lack of space for opening the transmitter loop. Results are very promising and open new perspectives for TDEM-method use in urban environments as this area remains unexplored. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palynostratigraphic and sedimentary fades analyses were made on sedimentary deposits from the left bank of the Solimoes River, southwest of Manaus. State of Amazonas, Brazil. These provided the age-elating and subdivision of a post-Cietaceous stratigraphic succession in the Amazonas Basin. The Novo Remanso Formation is subdivided into upper and lower units, and delineated by discontinuous surfaces at its top and bottom. The formation consists primarily of sandstones and minor mudstones and conglomerates, reflecting fluvial channel, point bar and floodplain facies of a fluvial meandering paleosystem. Fairly well-preserved palynoflora was recovered from four palynologically productive samples collected in a local irregular concentration of gray clay deposits, rich in organic material and fossilized wood, at the top of the Nova Remanso Formation upper unit. The palynoflora is dominated by terrestrial spores and pollen grains, an d is characterized by abundant angiosperm pollen grains (Tricolpites, Grimsdalea, Perisyncolporites, Tricolporites and Malvacearumpollis). Trilete spores are almost as abundant as the angiosperm pollen, and are represented mainly by the genera Deltoidospora. Verrutriletes, and Hamulatisporis. Gymnosperm pollen is scarce. The presence of the index species Grimsdalea magnaclavata Germeraad et al. (1968) indicates that these deposits belong to the Middle Miocene homonymous palynozone (Lorente, 1986; Hoorn, 1993; Jaramillo et al., 2011). Sedimentological characteristics (poorly sorted, angular to sub-angular, fine to very-coarse quartz sands facies) are typical of the NOW Remanso Formation upper part. These are associated with a paleoflow to the NE-E and SE-E, and with a a entirely lowland-derived palinofloristic content with no Andean ferns and gymnosperms representatives. All together, this suggests a cratonic origin for this Middle Miocene fluvial paleosystem, which was probably born in the Purus Arch eastern flank and areas surrounding the crystalline. The palynological analysis results presented herein are the first direct and unequivocal evidence of the occurrence of Middle Miocene deposits in the central part of the Amazonas Basin. They also provide new perspectives for intra- and interbasin correlations, as well as paleogeographic and paleoenvironmental interpretations for the later deposition stages in the northern Brazilian sedimentary basins. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the Ediacaran, southern Brazil was the site of multiple episodes of volcanism and sedimentation, which are best preserved in the 3000 km(2) Camaqua Basin. The interlayered sedimentary and volcanic rocks record tectonic events and paleoenvironmental changes in a more than 10 km-thick succession. In this contribution, we report new U-Pb and Sm-Nd geochronological constraints for the 605 to 580 Ma Born Jardim Group, the 570 Ma Acampamento Velho Formation, and a newly-recognized 544 Ma volcanism. Depositional patterns of these units reveal the transition from a restricted, fault-bounded basin into a wide, shallow basin. The expansion of the basin and diminished subsidence rates are demonstrated by increasing areal distribution and compressed isopachs and increasing onlap of sediments onto the basement to the west. The Sm-Nd isotopic composition of the volcanic rocks indicates mixed sources, including crustal rocks from the adjacent basement. Both Neoproterozoic and Paleoproterozoic sources are indicated for the western part of the basin, whereas only the older Paleoproterozoic signature can be discerned in the eastern part of the basin. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-rock geochemistry, combined with Sr-Nd isotopic composition of pelitic sedimentary rocks, have been considered to be useful parameters to estimate not only their provenance but also to make inferences about their depositional environment as well as the weathering processes they have been through. The basal sedimentary units of the basins of the northeastern Brazilian continental margin, particularly those of the pre-rift sequence, have been subject of interest of studies based on chemical and isotopic data, since they lack fossil content to establish their age and, therefore, stratigraphic correlations are difficult. The major and trace element contents as well as Sr-Nd isotopic compositions of whole-rock shale samples from five outcrops attributed to the pre-rift supersequence of the Camamu Basin were analyzed with the purpose of characterizing and obtaining further information that would allow a better correlation between the sites studied. The geochemical data suggest that the rocks exposed in the studied outcrops are part of the same sedimentary unit and that they might be correlated to the Capianga Member of the Alianca Formation of the Reconcavo Basin, exposed to the north of the Camamu Basin. The chemical index of alteration (CIA) suggests conditions associated with a humid tropical/subtropical climate at the time of deposition. Nd isotopic compositions indicate provenance from the Paleoproterozoic rocks of the Sao Francisco craton. The results presented here, therefore, show that the combined use of chemical and isotopic analyses may be of great interest to characterize and correlate lithologically homogeneous clastic sedimentary sequences. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new small Loricariidae, Hypostomus careopinnatus, is described from the Rio Taquari drainage, upper Rio Paraguay basin, Mato Grosso, Brazil. The new species can be easily distinguished from all congeners, except Hypostomus kids, by the absence of adipose fin. Hypostomus careopinnatus is distinguished from H. levis mainly by the presence of slender bifid teeth, with mesial cusp large and rounded, and lateral cusp small and pointed (vs. spoon-shaped teeth). The new species described herein completely lacks the adipose fin and also lacks the median pre-adipose plates in almost all specimens examined. The absence of adipose fin is probably an independent acquisition for Hypostomus careopinnatus and Hypostomus levis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several publications have contributed to improve the stratigraphy of the Paraíba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono-sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraíba Basin. Except for a few outcrops of carbonatic rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraíba Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.