4 resultados para Mathematical Processes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.