5 resultados para Mass extinction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312–316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth’s geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59?per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N = 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup similar to 9 and radial velocity of similar to 6000?km?s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000?km?s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000?km?s-1 is 8.0 X 10-5?h3?Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40?per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large firstsecond ranked galaxy magnitude gap according to TremaineRichstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies tend to be centrally located, again consistent with the predictions obtained from mvCGs. We found no significant correlation of group apparent elongation and velocity dispersion in the quartets among the v2MCGs, and the velocity dispersions of apparently round quartets are not significantly larger than those of chain-like ones, in contrast to what has been previously reported in HCGs. By virtue of its automatic selection with the popular Hickson criteria, its size, its selection on stellar mass, and its statistical signs of mergers and centrally located brightest galaxies, the v2MCG catalogue appears to be the laboratory of choice to study physically dense groups of four or more galaxies of comparable luminosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.