2 resultados para Manned space flight
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We have searched for young star-forming regions around the merger remnant NGC 2782. By using Galaxy Evolution Explorer far-ultraviolet and near-ultraviolet imaging and H i data we found seven ultraviolet sources, located at distances greater than 26 kpc from the centre of NGC 2782, and coinciding with its western H i tidal tail. These regions were resolved in several smaller systems when Gemini/Gemini multi-object spectrograph (GMOS) r-band images were used. We compared the observed colours to stellar population synthesis models and found that these objects have ages of similar to 1 to 11 Myr and masses ranging from 103.9 to 104.6 M circle dot. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H) = 8.74 +/- 0.20, 8.81 +/- 0.20 and 8.78 +/- 0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the centre of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.
Resumo:
RAMOS RT, MATTOS DA, REBOUCAS ITS, RANVAUD RD. Space and motion perception and discomfort in air travel. Aviat Space Environ Med 2012; 83:1162-6. Introduction: The perception of comfort during air trips is determined by several factors. External factors like cabin design and environmental parameters (temperature, humidity, air pressure, noise, and vibration) interact with individual characteristics (anxiety traits, fear of flying, and personality) from arrival at the airport to landing at the destination. In this study, we investigated the influence of space and motion discomfort (SMD), fear of heights, and anxiety on comfort perception during all phases of air travel. Methods: We evaluated 51 frequent air travelers through a modified version of the Flight Anxiety Situations Questionnaire (FAS), in which new items were added and where the subjects were asked to report their level of discomfort or anxiety (not fear) for each phase of air travel (Chronbach's alpha = 0.974). Correlations were investigated among these scales: State-Trait Anxiety Inventory (STAB, Cohen's Acrophobia Questionnaire, and the Situational Characteristics Questionnaire (SitQ, designed to estimate SMD levels). Results: Scores of SitQ correlated with discomfort in situations involving space and movement perception (Pearson's rho = 0.311), while discomfort was associated with cognitive mechanisms related to scores in the anxiety scales (Pearson's rho = 0.375). Anxiety traits were important determinants of comfort perception before and after flight, while the influence of SMD was more significant during the time spent in the aircraft cabin. Discussion: SMD seems to be an important modulator of comfort perception in air travel. Its influence on physical well being and probably on cognitive performance, with possible effects on flight safety, deserves further investigation.