17 resultados para Mammalian cell expression system
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To detect expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) in oocytes, and their receptor type 2 receptor for BMPs (BMPR2) in cumulus cells in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF), and determine if BMPR2, BMP15, and GDF9 expression correlate with hyperandrogenism in FF of PCOS patients. Prospective case-control study. Eighteen MII-oocytes and their respective cumulus cells were obtained from 18 patients with PCOS, and 48 MII-oocytes and cumulus cells (CCs) from 35 controls, both subjected to controlled ovarian hyperstimulation (COH), and follicular fluid (FF) was collected from small (10-14 mm) and large (> 18 mm) follicles. RNeasy Micro Kit (Qiagen(A (R))) was used for RNA extraction and gene expression was quantified in each oocyte individually and in microdissected cumulus cells from cumulus-oocyte complexes retrieved from preovulatory follicles using qRT-PCR. Chemiluminescence and RIA assays were used for hormone assays. BMP15 and GDF9 expression per oocyte was higher among women with PCOS than the control group. A positive correlation was found between BMPR2 transcripts and hyperandrogenism in FF of PCOS patients. Progesterone values in FF were lower in the PCOS group. We inferred that BMP15 and GDF9 transcript levels increase in mature PCOS oocytes after COH, and might inhibit the progesterone secretion by follicular cells in PCOS follicles, preventing premature luteinization in cumulus cells. BMPR2 expression in PCOS cumulus cells might be regulated by androgens.
Resumo:
Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye-staining of autophagic vesicles, and LC3-II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability - Crystal Violet staining (CVS), 3-[4, 5-dimethylthiaolyl]-2, 5-diphenyl-tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) - to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16-F10, HaCaT, HeLa, MES-SA, and MES-SA/Dx5 in a unique single microplate.
Resumo:
Lactic acid bacteria (LAB) are an attractive and safe alternative for the expression of heterologous proteins, as they are nonpathogenic and endotoxin-free organisms. Lactococcus lactis, the LAB model organism, has been extensively employed in the biotechnology field for large-scale production of heterologous proteins, and its use as a "cell factory" has been widely studied. We have been particularly interested in the use of L. lactis for production of heat shock proteins (HSPs), which reportedly play important roles in the initiation of innate and adaptive immune responses. However, this activity has been questioned, as LPS contamination appears to be responsible for most, if not all, immunostimulatory activity of HSPs. In order to study the effect of pure HSPs on the immune system, we constructed recombinant L. lactis strains able to produce and properly address the Mycobacterium leprae 65-kDa HSP (Hsp65) to the cytoplasm or to the extracellular medium, using a xylose-induced expression system. Approximately 7 mg/L recombinant Hsp65 was secreted. Degradation products related to lactococcal HtrA activity were not observed, and the Limulus amebocyte lysate assay demonstrated that the amount of LPS in the recombinant Hsp65 preparations was 10-100 times lower than the permitted levels established by the U. S. Food and Drug Administration. These new L. lactis strains will allow investigation of the effects of M. leprae Hsp65 without the interference of LPS; consequently, they have potential for a variety of biotechnological, medical and therapeutic applications.
Resumo:
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wildtype form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.
Resumo:
Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD?=?60, 120, and 240?mu mol photons m-2?s-1) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (Xm?=?4,055?mg?L-1, Px?=?406?mg?L-1?day-1, YX/N?=?5.07?mg?mg-1, total lipids?=?8.94%, total proteins?=?30.3%, PE?=?2.04%) was obtained at PPFD?=?120?mu mol photons m-2?s-1; therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work. Biotechnol. Bioeng. 2012; 109:444450. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and beta-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.
Resumo:
The putrescine analogue 1,4-diamino-2-butanone (DAB) is highly toxic to various microorganisms, including Trypanosoma cruzi. Similar to other a-aminocarbonyl metabolites. DAB exhibits pro-oxidant properties. DAB undergoes metal-catalyzed oxidation yielding H2O2, NH4+ ion, and a highly toxic alpha-oxoaldehyde. In vitro. DAB decreases mammalian cell viability associated with changes in redox balance. Here, we aim to clarify the DAB pro-oxidant effects on trypomastigotes and on intracellular T. cruzi amastigotes. DAB (0.05-5 mM) exposure in trypomastigotes, the infective stage of T. cruzi, leads to a decline in parasite viability (IC50 c.a. 0.2 mM DAB; 4 h incubation), changes in morphology, thiol redox imbalance, and increased TcSOD activity. Medium supplementation with catalase (2.5 mu M) protects trypomastigotes against DAB toxicity, while host cell invasion by trypomastigotes is hampered by DAB. Additionally, intracellular amastigotes are susceptible to DAB toxicity. Furthermore, pre-treatment with 100-500 mu M buthionine sulfoximine (BSO) of LLC-MK2 potentiates DAB cytotoxicity, whereas 5 mM N-acetyl-cysteine (NAC) protects cells from oxidative stress. Together, these data support the hypothesis that redox imbalance contributes to DAB cytotoxicity in both T. cruzi and mammalian host cells. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings: ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.
Resumo:
The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
We examined the interaction of the cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) with Langmuir monolayers of zwitterionic (dipalmitoyl phosphatidylcholine, DPPC, and dipalmitoyl phosphatidylethanolamine, DPPE) and negatively charged phospholipids (dipalmitoyl phosphatidic acid, DPPA, and dipalmitoyl phosphatidylglycerol, DPPG). Both surface pressure and surface potential isotherms became more expanded upon addition of TRP3 (DPPE similar to DPPC << DPPA < DPPG). The stronger interaction with negatively charged phospholipids agrees with data for vesicles and planar lipid bilayers, and with AMPs greater activity against bacterial membranes versus mammalian cell membranes. Considerable expansion of negatively charged monolayers occurred at 10 and 30 mol% TRP3, especially at low surface pressure. Moreover, a difference was observed between PA and PG, demonstrating that the interaction, besides being modulated by electrostatic interactions, displays specificity with regard to headgroup, being more pronounced in the case of PG, present in large quantities in bacterial membranes. In previous studies, it was proposed that the peptide acts by a toroidal pore-like mechanism [1,2]. Considering the evidence from the literature that PG shows a propensity to form a positive curvature as do toroidal pores, the observation of TRP3's preference for the PG headgroup and the dramatic increase in area promoted by this interaction represent further support for the toroidal pore mechanism of action proposed for TRP3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagas disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. Methodology/Principal Findings: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. Conclusions/Significance: Herein it is shown, for the first time, that paraflagellar rod proteins and alpha-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.
Resumo:
Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs) harvested on titanium (Ti), using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs) on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.
Resumo:
Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.
Resumo:
The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC.