10 resultados para Males.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This study evaluated the effects of two lipids sources of fish residue (tilapia and salmon) compared with a vegetable oil source (soybean oil) on the fatty acid profiles of male and female lambari. This experiment was developed in a completely randomized experimental design in a 3 x 2 factorial arrangement, totaling 6 treatments resulting from the combination of the three experimental diets for both sexes, with four replications for each treatment. This study involved 120 male (2.58 +/- 0.13 g) and 72 female lambari (4.00 +/- 0.09 g), fed the experimental diets twice a day until apparent satiation for a period of 60 days. Oleic, linoleic, palmitic and stearic fatty acids were found at higher concentrations in all experimental oils and diets, as well in the muscle of male and female lambari. The low amounts of arachidonic, eicosapentaenoic and docosahexaenoic acids in the experimental diets and subsequent greater concentrations in muscle tissue, suggested that lambari are able to desaturate and elongate the chain of fatty acids with 18 carbons. The fish of both sexes that received the diet with soybean oil showed high levels of n-6 fatty acids, especially of C18: 2n-6 and low levels of eicosapentaenoic and docosahexaenoic acids. The diet with salmon residue oil promoted higher levels of fatty acids of the n-3 series and resulted in the best n-3/n-6 ratio in the muscle of male and female lambari. The oils from fish residues can be a substitute for traditional fish oil and its use in the lambari diets does not impair its growth.
Resumo:
Males, queens and workers of stingless bees show differences in external morphology, behaviour and roles within a colony. In addition, each individual has a cuticular chemical signature responsible for mutual communication that is essential for maintaining the integrity of the colony. In this paper we characterize the cuticular hydrocarbon composition of newly emerged diploid and haploid males, workers and virgin queens of Melipona quadrifasciata by gas chromatography-mass spectrometry (GC/MS) analysis. This is the first time that the cuticular profile of diploid males in a species of stingless bee has been characterized. We found differences in the cuticular hydrocarbon composition among males, workers and virgin queens, recording both qualitative and quantitative differences among individuals of different phenotypes. However, no compound was found exclusively in diploid males. The cuticular chemical profiles of haploid and diploid males were very similar to those of workers. Moreover, the cuticular lipids of males and workers were significantly different from those of queens. Tricosane, pentacosene-2 and 7-methyl-heptacosane were the compounds responsible for this significant separation. This result correlates with the behavioural and morphological differences among these phenotypes.
Resumo:
The immatures of males of two species of Camponotus ants (Hymenoptera: Formicidae) are described and compared by light and electron microscopy. The numbers of larval instars were determined: Camponotus rufipes Fabricius (Hymenoptera: Formicidae) have four instars; and Camponotus vittatus Forel have three. Male larvae of the two species are similar to previously described Camponotus larvae, sharing the following traits: basic shape of body and mandible, presence of 'chiloscleres', 'praesaepium' (some specimens), labial pseudopalps, and ten pairs of spiracles. However, larvae of the two species can be separated by bodily dimensions and based on their hair number and types. Worker larvae of C. vittatus previously described are extensively similar to male larvae, with only a few inconspicuous differences that may result from intraspecific variation or sexual differences.
Resumo:
Complementary sex determination in Hymenoptera implies that heterozygosity at the sex locus leads to the development of diploid females, whereas hemizygosity results in haploid males. Diploid males can arise through inbreeding. In social species, these pose a double burden on colony fitness, from significant reduction in its worker force and through being less viable and fertile than haploid males. Apart from being "misfits", diploid males are of interest to assess molecular correlates for possibly ploidy-related bionomic differences. Herein, we generated suppression subtractive cDNA libraries from newly emerged haploid and diploid males of the stingless bee Melipona quadrifasciata to enrich for differentially expressed genes. Gene Ontology classification revealed that in haploid males more DEGs were related to stress responsiveness, biosynthetic processes, reproductive processes and spermatogenesis, whereas in diploid ones differentially expressed genes were associated with cellular organization, nervous system development and amino acid transport were prevalent. Furthermore, both libraries contained over 40 % ESTs representing possibly novel transcripts. Quantitative RT-PCR analyses confirmed the differential expression of a representative DEG set in newly emerged males. Several muscle formation and energy metabolism-related genes were under-expressed in diploid males. On including 5-day-old males in the analysis, changes in transcript abundance during sexual maturation were revealed.
Resumo:
Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Resumo:
Exclusive paternal care is the rarest form of parental investment in nature and theory predicts that the maintenance of this behavior depends on the balance between costs and benefits to males. Our goal was to assess costs of paternal care in the harvestman Iporangaia pustulosa, for which the benefits of this behavior in terms of egg survival have already been demonstrated. We evaluated energetic costs and mortality risks associated to paternal egg-guarding in the field. We quantified foraging activity of males and estimated how their body condition is influenced by the duration of the caring period. Additionally, we conducted a one-year capture-mark-recapture study and estimated apparent survival probabilities of caring and non-caring males to assess potential survival costs of paternal care. Our results indicate that caring males forage less frequently than non-caring individuals (males and females) and that their body condition deteriorates over the course of the caring period. Thus, males willing to guard eggs may provide to females a fitness-enhancing gift of cost-free care of their offspring. Caring males, however, did not show lower survival probabilities when compared to both non-caring males and females. Reduction in mortality risks as a result of remaining stationary, combined with the benefits of improving egg survival, may have played an important and previously unsuspected role favoring the evolution of paternal care. Moreover, males exhibiting paternal care could also provide an honest signal of their quality as offspring defenders, and thus female preference for caring males could be responsible for maintaining the trait.
Resumo:
NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.
Resumo:
Spontaneous crossing over in males of Drosophila ananassae has been well demonstrated using F-1 individuals from crosses between marker stocks and wild type strains. However, the question of its occurrence in males from natural populations remained open. Here we present the cytological evidence that crossing over does occur in males of D. ananassae from two Brazilian populations, sampled nearly 21 years apart, and in two recently sampled populations, one from Indonesia and one from Okinawa, Japan. Cytological analysis of meiosis in males collected from nature and in sons of females from the same population inseminated in nature revealed the presence of chiasmata, inversion chiasmata, and isosite chromosome breakages in the diplotene cells in all sampled populations. These data demonstrate that reciprocal and nonreciprocal exchanges and chromosome breakages, previously reported as related events of male crossing over, do occur at variable frequencies among males from natural populations.
Resumo:
STUDY DESIGN: Controlled laboratory study using a cross-sectional design. OBJECTIVES: To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. BACKGROUND: Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. METHODS: Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). RESULTS: Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean +/- SD, 9.3 degrees +/- 5.30 degrees versus 6.7 degrees +/- 3.0 degrees; P = .012), contralateral pelvic drop (10.3 degrees +/- 4.7 degrees versus 7.4 degrees 3.8 degrees; P = .003), hip adduction (14.8 degrees +/- 7.8 degrees versus 10.8 degrees +/- 5.6 degrees; P<.0001), and knee abduction (9.2 degrees +/- 5.0 degrees versus 5.8 degrees +/- 3.4 degrees; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. CONCLUSION: Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS. J Orthop Sports Phys Ther 2012;42(6):491-501, Epub 8 March 2012. doi:10.2519/jospt.2012.3987
Resumo:
Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries-a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5' untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5' UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females.