2 resultados para Magnoliophyta
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C(plant):C(soil)) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C (soil) (-b) ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii.
Resumo:
Abstract Background The CACTA (also called En/Spm) superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs) and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of the elements flanked by direct repeats and the presence of a Transposase_21 domain, that suggest a distant relationship to CACTA transposons from Magnoliophyta. Several sequences from other Metazoa and Fungi code for proteins similar to those encoded by SmTRC1, suggesting that such elements have a common ancestry, and indicating inheritance through vertical transmission before separation of the Eumetazoa, Fungi and Plants.