14 resultados para Magnesium borate hydroxide
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.
Resumo:
The present study aimed to evaluate the photoprotective effects of cosmetic formulations containing a dispersion of liposome with magnesium ascorbyl phosphate (MAP), alpha-lipoic acid (ALA) and kinetin, as well as their effects on the hydration and viscoelastic skin properties. The photoprotection was determined in vitro (antioxidant activity) and in vivo on UV-irradiated hairless mouse skin. The hydration effects were performed with the application of the formulations under study on the forearm of human volunteers and skin conditions were analyzed before and after a single application and daily applications during 4 weeks in terms of transepidermal water loss (TEWL), skin moisture and viscoelastic properties. The raw material under study possessed free-radical scavenging activity and the formulation with it protected hairless mouse skin barrier function against UV damage. After 4 weeks of application on human skin, the formulation under study enhanced stratum corneum skin moisture and also showed hydration effects in deeper layers of the skin. Thus, it can be concluded that the cosmetic formulation containing a dispersion of liposome with MAP, ALA and kinetin under study showed photoprotective effects in skin barrier function as well as pronounced hydration effects on human skin, which suggests that this dispersion has potential antiaging effects.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, Pro Taper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the Pro Taper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1. - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the Pro Taper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (x1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
Removal of Mg from aluminum scraps, known as demagging, has been widely applied in the,aluminum industry. This work discusses bubble-formation theories and magnesium kinetic removal from aluminum scraps using chlorine and inert gas fluxing. The interfacial area of the bubbles and residence time were estimated using a mathematical model. To inject gaseous chlorine, three types of nozzles were used with varying internal diameter. In addition, a porous plug, as well as varying input chlorine flow and concentration were used. The use of lower chlorine concentration improves efficiency because the interfacial tension is reduced therefore, more and smaller bubbles are formed. The model proposed herein is consistent with the experimental data. [doi:10.2320/matertrans.M2011256]
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.
Resumo:
Introduction: The purpose of this study was to analyze the influence of ultrasonic activation of calcium hydroxide (CH) pastes on pH and calcium release in simulated external root resorptions. Methods: Forty-six bovine incisors had their canals cleaned and instrumented, and defects were created in the external middle third of the roots, which were then used for the study. The teeth were externally made impermeable, except for the defected area, and divided into the following 4 groups containing 10 samples each according to the CH paste and the use or not of the ultrasonic activation: group 1: propylene glycol without ultrasonic activation, group 2: distilled water without ultrasonic activation, group 3: propylene glycol with ultrasonic activation, and group 4: distilled water with ultrasonic activation. After filling the canals with the paste, the teeth were restored and individually immersed into flasks with ultrapure water. The samples were placed into other flasks after 7, 15, and 30 days so that the water pH level could be measured by means of a pH meter. Calcium release was measured by means of an atomic absorption spectrophotometer. Six teeth were used as controls. The results were statistically compared using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). Results: For all periods analyzed, the pH level was found to be higher when the CH paste was activated with ultrasound. Calcium release was significantly greater (P < .05) using ultrasonic activation after 7 and 30 days. Conclusions: The ultrasonic activation of CH pastes favored a higher pH level and calcium release in simulated external root resorptions. (J Endod 2012;38:834-837)
Resumo:
Deficiencies in calcium (Ca) and magnesium (Mg) are associated with various complications during pregnancy. To test the hypothesis that the status of these minerals is inadequate in pregnancy, a cross-sectional study was conducted of the dietary intake and status of Ca and Mg in pregnant women (n = 50) attending a general public university hospital in Brazil. Dietary intake was assessed from 4-day food records; levels of plasma Mg, erythrocyte Mg, and urinary Ca and Mg excretion were determined by flame atomic absorption spectroscopy; and type I collagen C-telopeptides were evaluated by enzyme-linked immunosorbent assay. Probabilities of inadequate Ca and Mg intake were exhibited by 58 and 98% of the study population, respectively. The mean levels of urinary Ca and Mg excretion were 8.55 and 3.77 mmol/L, respectively. Plasma C-telopeptides, plasma Mg, and erythrocyte Mg were within normal levels. Multiple linear regression analysis revealed positive relationships among urinary Ca excretion, Ca intake (P = .002) and urinary Mg excretion (P < .001) and between erythrocyte Mg and Mg intake (P = .023). It is concluded that the Ca and Mg status of participants was adequate even though the intake of Ca and Mg was lower than the recommended level. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Premature ventricular and supraventricular complexes (PVC and PsVC) are frequent and often symptomatic. The magnesium (Mg) ion plays a role in the physiology of cell membranes and cardiac rhythm. Objective: We evaluated whether the administration of Mg Pidolate (MgP) in patients with PVC and PsVC is superior to placebo (P) in improving symptoms and arrhythmia frequency. Methods: Randomized double-blind study with 60 consecutive symptomatic patients with more than 240 PVC or PsVC/h on 24-hour Holter monitoring who were selected to receive placebo or MgP. To evaluate symptom improvement, a categorical and a specific questionnaire for symptoms related to PVC and PsVC was made. Improvement in premature complex density (PCD) per hour was considered significant if percentage reduction was >= 70% after treatment. The dose of MgP was 3.0 g/day for 30 days, equivalent to 260mg of Mg element. None of the patients had structural heart disease or renal failure. Results: Of the 60 patients, 33 were female (55%). Ages ranged from 16 to 70 years old. In the MgP group, 76.6% of patients had a PCD reduction >70%, 10% of them >50% and only 13.4% <50%. In the P group, 40% showed slight improvement, <30%, in the premature complexes frequency (p < 0.001). Symptom improvement was achieved in 93.3% of patients in the MgP group, compared with only 16.7% in the P group (p < 0.001). Conclusion: Oral Mg supplementation decreases PCD, resulting in symptom improvement. (Arq Bras Cardiol 2012;98(6):480-487)
Resumo:
This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans
Resumo:
Introduction: The purpose of this study was to evaluate the antimicrobial activity of calcium hydroxide, 2% chlorhexidine gel, and triantibiotic paste (ie, metronidazole, minocycline, and ciprofloxacin) by using an intraorally infected dentin biofilm model. Methods: Forty bovine dentin specimens were infected intraorally using a removable orthodontic device in order to induce the biofilm colonization of the dentin. Then, the samples were treated with the medications for 7 days. Saline solution was used as the control. Two evaluations were performed: immediately after the elimination of the medication and after incubation in brain-heart infusion medium for 24 hours. The Live/Dead technique (Invitrogen, Eugene, OR) and a confocal microscope were used to obtain the percentage of live cells. Nonparametric statistical tests were performed to show differences in the percentage of live cells among the groups (P < .05). Results: Calcium hydroxide and 2% chlorhexidine gel did not show statistical differences in the immediate evaluation. However, after application of the brain-heart infusion medium for 24 hours, 2% gel chlorhexidine showed a statistically lesser percentage of live cells in comparison with calcium hydroxide. The triantibiotic paste significantly showed a lower percentage of live cells in comparison with the 2% chlorhexidine gel and calcium hydroxide groups in the immediate and secondary (after 24 hours) evaluations. Conclusions: The triantibiotic paste was most effective at killing the bacteria in the biofilms on the intraorally infected dentin model in comparison with 2% chlorhexidine gel and calcium hydroxide
Resumo:
Besides the risk of filling material extrusion throughout the apex, a satisfactory apical seal can be difficult to achieve in canals with open apices or iatrogenic enlargements of the apical constriction. These situations pose a challenge to root canal filling. This paper describes the root canal filling of a maxillary right canine with an overinstrumented apex, complete loss of the apical stop, extensive canal transportation and apical periodontitis. A 5 mm calcium hydroxide apical plug was placed before root canal filling. The plug was made by soaking paper points with saline, dipping the points in calcium hydroxide powder and then applying it to the apex several times, until a consistent apical plug was obtained. The canal was then irrigated with saline in order to remove any residual calcium hydroxide from the root canal walls, dried with paper points and obturated with an inverted #80 gutta-percha cone and zinc oxide-eugenol based sealer by the lateral condensation technique. An 8-year radiographic follow-up showed formation of mineralized tissue sealing the apical foramen, apical remodeling and no signs of apical periodontitis.