6 resultados para MYOCARDIAL INFARCT SIZE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Predictors of adverse outcomes following myocardial infarction (MI) are well established; however, little is known about what predicts enzymatically estimated infarct size in patients with acute ST-elevation MI. The Complement And Reduction of INfarct size after Angioplasty or Lytics trials of pexelizumab used creatine kinase (CK)-MB area under the curve to determine infarct size in patients treated with primary percutaneous coronary intervention (PCI) or fibrinolysis. Methods Prediction of infarct size was carried out by measuring CK-MB area under the curve in patients with ST-segment elevation MI treated with reperfusion therapy from January 2000 to April 2002. Infarct size was calculated in 1622 patients (PCI=817; fibrinolysis=805). Logistic regression was used to examine the relationship between baseline demographics, total ST-segment elevation, index angiographic findings (PCI group), and binary outcome of CK-MB area under the curve greater than 3000 ng/ml. Results Large infarcts occurred in 63% (515) of the PCI group and 69% (554) of the fibrinolysis group. Independent predictors of large infarcts differed depending on mode of reperfusion. In PCI, male sex, no prior coronary revascularization and diabetes, decreased systolic blood pressure, sum of ST-segment elevation, total (angiographic) occlusion, and nonright coronary artery culprit artery were independent predictors of larger infarcts (C index=0.73). In fibrinolysis, younger age, decreased heart rate, white race, no history of arrhythmia, increased time to fibrinolytic therapy in patients treated up to 2 h after symptom onset, and sum of ST-segment elevation were independently associated with a larger infarct size (C index=0.68). Conclusion Clinical and patient data can be used to predict larger infarcts on the basis of CK-MB quantification. These models may be helpful in designing future trials and in guiding the use of novel pharmacotherapies aimed at limiting infarct size in clinical practice. Coron Artery Dis 23:118-125 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE). Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013). Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Left ventricular free wall rupture occurs in up to 10% of the in-hospital deaths following myocardial infarction. It is mainly associated with posterolateral myocardial infarction and its antemortem diagnosis is rarely made. Contrast echocardiography has been increasingly used for the evaluation of myocardial perfusion in patients with acute myocardial infarction, with important prognostic implications. In this case, we reported its use for the detection of a mechanical complication following myocardial infarction. Case presentation: A 50-year-old man with acute myocardial infarction in the lateral wall underwent myocardial contrast echocardiography for the evaluation of myocardial perfusion in the third day post-infarction. A perfusion defect was detected in lateral and inferior walls as well as the presence of contrast extrusion from the left ventricular cavity into the myocardium, forming a serpiginous duct extending from the endocardium to the epicardial region of the lateral wall, without communication with the pericardial space. Magnetic resonance imaging confirmed the diagnosis of impending rupture of the left ventricular free wall. While waiting for cardiac surgery, patient presented with cardiogenic shock and died. Anatomopathological findings were consistent with acute myocardial infarction in the lateral wall and a left ventricular free wall rupture at the infarct site. Conclusion: This case illustrates the early diagnosis of left ventricular free wall rupture by contrast echocardiography. Due to its ability to be performed at bedside this modality of imaging has the potential to identify this catastrophic condition in patients with acute myocardial infarction and help to treat these patients with emergent surgery.