2 resultados para MULTIVALENT DENDRONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate effects of feeding monensin (MON) or a multivalent polyclonal antibody preparation (PAP) against several rumen microorganisms on feedlot performance, carcass characteristics, blood gas profile, and rumenitis of Bos indicus biotype (BT) yearling bulls. The study was designed as a completely randomized design with a 3 x 2 factorial arrangement, replicated 4 times, in which 32 yearling bulls of each of 3 BT evaluated (3-way-cross, TC; Canchim, CC; and Nellore, NE) were fed diets containing either MON at 300 mg.d(-1) or PAP at 10 mL.d(-1) across 3 different periods. No significant (P > 0.10) feed additive (FA) main effects were observed for any of the feedlot performance variables and carcass characteristics with the exception of dressing percentage. Yearling bulls receiving PAP had a decreased (P = 0.047) dressing percentage when compared with yearling bulls receiving MON. Significant (P < 0.05) BT main effects were observed for all feedlot performance variables and carcass characteristics with the exception of kidney-pelvic fat expressed in kilograms (P = 0.49) and LM lipids content (P = 0.45). Crossbred yearling bulls (TC and CC) had greater (P < 0.001) ADG, DMI in kilograms, DMI as % of BW, and improved (P = 0.001) G: F when compared with NE yearling bulls. A tendency (P = 0.072) for a FA main effect was observed for rumenitis scores, in which yearling bulls receiving PAP had lesser rumenitis scores than those receiving MON. When the data were disposed as frequency percentage, 55.6% and 45.7% of the rumens from yearling bulls fed PAP and MON were scored between 0 and 1, respectively (0 = no lesions, 10 = severe lesions). Likewise, a significant BT main effect was observed (P = 0.008), where NE yearling bulls had greater rumenitis scores than those of crossbred yearling bulls (TC and CC). No signifi cant FA main effects were observed (P > 0.10) for any of the fatty acids measured in the subcutaneous adipose tissue, with the exception that yearling bulls receiving MON had greater (P < 0.05) concentrations of palmitic acid (16: 0), margaric acid (17: 0), docosapentaenoic acid (22: 5), and docosahexaenoic acid (22: 6) than those yearling bulls receiving PAP. Feeding PAP tended to decrease incidence of rumen lesions and led to similar feedlot performance compared with feeding MON. Thus, PAP is a new technology that presents a possible alternative for ionophores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M-ficolin specificity for sialylated ligands prompted us to investigate its interactions with the main membrane sialoprotein of human neutrophils, CD43. rM-ficolin bound CD43 and prevented the access of anti-CD43 mAb. Moreover, rM-ficolin reacted exclusively with CD43 on Western blots of neutrophil lysate. We confirmed that M-ficolin is secreted by fMLP-activated neutrophils, and this endogenous M-ficolin also binds to CD43 and competes with anti-CD43 mAb. Anti-CD43 antibody cross-linking or fMLP resulted in M-ficolin and CD43 colocalization on polarized neutrophils. The binding of rM-ficolin to resting neutrophils induced cell polarization, adhesion, and homotypic aggregation as anti-CD43 mAb. The M-ficolin Y271F mutant, unable to bind sialic acid, neither reacted with neutrophils nor modulated their functions. Finally, rM-ficolin activated the lectin complement pathway on neutrophils. These results emphasize a new function of M-ficolin, different from ficolin pathogen recognition, i.e., a participation to neutrophil adhesion potentially important in early inflammation, as nanomolar agonist concentrations are sufficient to mobilize M-ficolin to the neutrophil surface. This multivalent lectin could then endow the antiadhesive CD43, essentially designed to prevent leukocyte aggregation in the blood flow, with new adhesive properties and explain, at least in part, dual-adhesive/antiadhesive roles of CD43 in neutrophil recruitment. J. Leukoc. Biol. 91: 469-474; 2012.