2 resultados para MMS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Solanum lycocarpum St.-Hil (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado, popularly known as "fruit-of-wolf". Considering that the induction of chromosomal mutations is involved in the process of carcinogenesis, and that S. lycocatpum is often used in folk medicine, it becomes relevant to study its effect on genetic material. In this sense, the aim of present study was to determine the possible cytotoxic, genotoxic and antigenotoxic potentials of S. lycocarpum fruits glycoalkaloid extract (SL) in Chinese hamster lung fibroblasts (V79 cells). The cytotoxicity was evaluated by the colony forming assay, apoptosis and necrosis assay. Trypan blue exclusion dye method and mitotic index. Genotoxic and antigenotoxic potential were evaluated by comet and chromosomal aberrations assays. Four concentrations of SL (4, 8, 16 and 32 mu g/mL) were used for the evaluation of its genotoxic potential. The DNA damage-inducing agent methyl methanesulfonate (MMS, 221 mu g/mL) was utilized in combination with extract to evaluate a possible protective effect. The results showed that SL was cytotoxic at concentrations above 32 mu g/mL by the colony forming assay. For apoptosis and necrosis assay, the concentration of 64 mu g/mL of SL showed statistically significant increase in cell death by apoptosis and necrosis, while the concentrations of 128 and 256 mu g/mL of SL demonstrated statistically significant increase in cell death by necrosis, compared with the control group. Analysis of cell viability by Trypan blue exclusion indicated >96% viability for treatments with concentrations up to 32 mu g/mL of SL No significant differences in MI were observed between cultures treated with different concentrations of 51 (4, 8, 16 and 32 mu g/mL) alone or in combination with MMS and the negative control, indicating that these treatments were not cytotoxic. The comet and chromosomal aberrations assays revealed that SL does not display genotoxic activity. Moreover, the different concentrations of SL showed protective effect against both genomic and chromosomal damages induced by MMS. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Baccharin is one of the major chemical compounds isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America and the most important botanical source of the Brazilian green propolis that has been used in alternative medicine to treat inflammation, liver disorders, and stomach ulcers. The present study was carried out in V79 cells to determine the possible genotoxic and antigenotoxic activities of baccharin utilizing comet and micronucleus assays, where 2 known mutagenic agents with different mechanisms of DNA damage were used as positive controls. The V79 cells were treated with concentrations of baccharin (0.25, 0.5, 1.0, and 2.0 mu g/mL) and for to investigate the antigenotoxicity these concentrations were associated with methyl methanesulfonate (MMS; 200 mu M-comet assay and 400 mu M-micronucleus assay) or hydrogen peroxide (H2O2; 50 mu M-comet assay and 100 mu M-micronucleus assay). Statistically significant differences in the rate of DNA damage were observed in cultures treated with the highest concentration of baccharin when compared to the control group, but this difference was not found in the micronucleus assay. The results also showed that the frequencies of DNA damage and micronuclei induced by MMS and H2O2 were significantly reduced after treatment with baccharin. The baccharin showed a chemoprevention effect and can be the chemical compound responsible for the antigenotoxicity also demonstrated by the B. dracunculifolia. The antioxidant potential of baccharin may be related to its chemoprevention activity induced against both genomic and chromosomal damages.