10 resultados para MIG-P CA.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The impact of tannery sludge application on soil microbial community and diversity is poorly understood. We studied the microbial community in an agricultural soil following two applications (2006 and 2007) of tannery sludge with annual application rates of 0.0,2.3 and 22.6 Mg ha(-1). The soil was sampled 12 and 271 days after the second (2007) application. Community structure was assessed via a phospholipid fatty acid analysis, and the physiological profile of the soil microbial community via the Biolog method. Tannery sludge application changed soil chemical properties, increasing the soil pH and electrical conductivity as well as available P and mineral N concentrations. The higher sludge application rate changed the community structure and the physiological profile of the microbial community at both sampling dates. However, there is no clear link between community structure and carbon substrate utilization. According to the Distance Based Linear Models Analysis, the fatty acids 16:0 and 117:0 together contributed 84% to the observed PLFA patterns, whereas the chemical properties available P, mineral N, and Ca, and pH together contributed 54%. At 12 days, tannery sludge application increased the average well color development from 0.46 to 0.87 after 48 h, and reduced the time elapsed before reaching the midpoint carbon substrate utilization (s) from 71 to 44 h, an effect still apparent nine months after application of the higher sludge application rate. The dominant signature fatty acids and kinetic parameters (r and s) were correlated to the concentrations of available P. Ca, mineral N, pH and EC. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.
Resumo:
Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.
Resumo:
Periwinkle (Catharanthus roseus), a tropical perennial plant, was found to be infected by a phytoplasma. Plants exhibiting virescence, phyllody and variegation symptoms were collected in the states of Minas Gerais and Sao Paulo, Brazil. The phytoplasma was transmitted by grafting from an infected periwinkle plant to healthy plants and by dodder to a citrus plant. Phytoplasma isolates from periwinkle plants from Brazil had the 16S rDNA gene sequenced and were classified in the 16SrIX group, subgroup A, belonging to the 'Candidatus P. phoenicium' species.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A simple and fast method for the determination of Ca, Cu, Fe, Mg, Mn, Se and Zn in bovine semen by quadrupole inductively coupled plasma spectrometry (q-ICP-MS) is described. Prior to analysis, samples (200 µL) were diluted 1:50 in a solution containing 0.01% v/v Triton® X-100 and 0.5% v/v nitric acid and directly analyzed by ICP-MS. The limits of detection of the method are 0.3, 0.03, 0.2, 0.04, 0.04, 0.03 and 0.03 µg L-1 for 44Ca, 63Cu, 57Fe, 24Mg, 64Zn, 82Se and 55Mn, respectively. For purposes of comparison and method validation, four ordinary bovine semen samples were directly analyzed by ICP-MS and by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GF AAS), with no statistical difference between the techniques at the 95% level when applying the t-test. Then, the proposed method was applied in the determinations of Ca, Cu, Fe, Mg, Mn, Se and Zn in collected samples of bovine semen from different breeds, which are used in reproduction programs and artificial insemination.
Resumo:
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.
Resumo:
Fluorcalciomicrolite, (Ca,Na,□)2Ta2O6F, is a new microlite-group, pyrochlore supergroup mineral approved by the CNMNC (IMA 2012-036). It occurs as an accessory mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals include: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn), monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon, "tourmaline", bityite, hydrokenomicrolite, and other microlite-group minerals under study. Fluorcalciomicrolite occurs as euhedral, untwinned, octahedral crystals 0.1-1.5 mm in size, occasionally modified by rhombododecahedral faces. The crystals are colourless and translucent; the streak is white, and the lustre is adamantine to resinous. It does not fluoresce under ultraviolet light. Mohs' hardness is 4½- 5, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 6.160 g/cm3. The mineral is isotropic, ncalc. = 1.992. The Raman spectrum is dominated by bands of B-X octahedral bond stretching and X-B-X bending modes.The chemical composition (n = 6) is (by wavelength dispersive spectroscopy, H2O calculated to obtain charge balance, wt.%): Na2O 4.68, CaO 11.24, MnO 0.01, SrO 0.04, BaO 0.02, SnO2 0.63, UO2 0.02, Nb2O5 3.47, Ta2O5 76.02, F 2.80, H2O 0.48, O=F -1.18, total 98.23. The empirical formula, based on 2 cations at the B site, is (Ca1.07Na0.81□0.12)∑2.00(Ta1.84Nb0.14Sn0.02)∑2.00 [O5.93(OH)0.07]6.00[F0.79(OH)0.21]. The strongest eight X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 5.997(59)(111), 3.138(83)(311), 3.005(100)(222), 2.602(29)(400), 2.004(23)(511), 1.841(23)(440), 1.589(25)(533), and 1.504(24)(444). The crystal structure refinement (R1 = 0.0132) gave the following data: cubic, Fd3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, Z = 8.