18 resultados para MHD instabilities

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfven Bresillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high mHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. (C) 2011 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submesoscale activity over the Argentinian shelf is investigated by means of high resolution primitive equation numerical solutions. These reveal energetic turbulent activity (visually similar to the one occasionally seen in satellite images) at scales O(5 km) in fall and winter that is linked to mixed layer baroclinic instability. The air-sea heat flux responsible for (i) deepening the upper ocean boundary layer (at these seasons) and (ii) maintaining a cross-shelf background density gradient is the key environmental parameter controlling submesoscale activity. Implications of submesoscale turbulence are investigated. Its mixing efficiency estimated by computing a diffusivity coefficient is above 30 m(2) s(-1) away from the shallowest regions. Aggregation of surface buoyant material by submesoscale currents occurs within hours and is presumably important to the ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011) we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009) we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009) show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-distance correlations (LDCs) of plasma potential fluctuations in the plasma edge have been investigated in the TCABR tokamak in the regime of edge biasing H-mode using an array of multi-pin Langmuir probes. This activity was carried out as part of the scientific programme of the 4th IAEA Joint Experiment (2009). The experimental data confirm the effect of amplification of LDCs in potential fluctuations during biasing recently observed in stellarators and tokamaks. For long toroidal distances between probes, the cross-spectrum is concentrated at low frequencies f < 60 kHz with peaks at f < 5 kHz, f = 13-15 kHz and f similar to 40 kHz and low wave numbers with a maximum at k = 0. The effects of MHD activity on the LDCs in potential fluctuation are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of magnetohydrodynamics (MHD) turbulence in astrophysical environments is still highly debated. An important question that permeates this debate is the transport of magnetic flux. This is particularly important, for instance, in the context of star formation. When clouds collapse gravitationally to form stars, there must be some magnetic flux transport. Otherwise, the newborn stars would have magnetic fields several orders of magnitude larger than the observed ones. Also, the magnetic flux that is dragged in the late stages of the formation of a star can remove all the rotational support from the accretion disc that grows around the protostar. The efficiency of the mechanism that is often invoked to allow transport of magnetic fields at different stages of star formation, namely ambipolar diffusion, has recently been put in check. We discuss here an alternative mechanism for magnetic flux transport which is based on turbulent fast magnetic reconnection. We review recent results from three-dimensional MHD numerical simulations that indicate that this mechanism is very efficient in decoupling and transporting magnetic flux from the inner denser regions to the outskirts of collapsing clouds at different stages of star formation. We discuss this mechanism also in the context of dynamo processes and speculate that it can play a role both in solar dynamo and in accretion disc dynamo processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various types of trill exercises have been used for a long time as a tool in the treatment and preparation of the voice. Although they are reported to produce vocal benefits in most subjects, their physiology has not yet been studied in depth. The aim of this study was to compare the mean and standard deviation of the closed quotient in exercises of lip and tongue trills with the sustained vowel /epsilon/ in opera singers. Ten professional classical (operatic) singers, reportedly in perfect laryngeal health, served as subjects for this study and underwent electroglottography. During the examination, the subjects were instructed to deliver the sustained vowel /epsilon/ and lip and tongue trills in a same preestablished frequency and intensity. The mean values and standard deviation of the closed quotient were obtained using the software developed for this purpose. The comparison of the results was intrasubjects; maximum intensities were compared only among them and so were minimum intensities. The means of closed quotient were statistically significant only in the strong intensities, and the lip trill was different from the tongue trill and the sustained vowel /epsilon/. The standard deviation of the closed quotient distinguished the sustained vowel /epsilon/ from the lip and tongue trills in the two intensities. We concluded that there is oscillation of the closed quotient during the exercises of tongue and lip trills, and the closed quotient is higher during the performance of exercises of the lip trill, when compared with the two other utterances, only in the strong intensities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683467]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions similar to 100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in [3] and demonstrated numerically in [8]. When turbulence is included within the current sheet, the acceleration rate is highly enhanced, because reconnection becomes fast and independent of resistivity [4,11] and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.