5 resultados para MEAN-MOTION RESONANCE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies. Received 29 February 2012, accepted 17 May 2012, first published online 18 July 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large-scale orbital migration. The first part of this paper reviews the main detection techniques employed for the detection and orbital characterization of multiple-planet systems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamical evolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hierarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple analytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. In particular, we show how mean-motion resonances can generate complex structures in the phase space where different libration islands and circulation domains are separated by chaotic layers. In all cases we use real exoplanetary systems as working examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the discovered exoplanetary systems are involved inside mean-motion resonances. In this work we focus on the dynamics of the 3:1 mean-motion resonant planetary systems. Our main purpose is to understand the dynamics in the vicinity of the apsidal corotation resonance (ACR) which are stationary solutions of the resonant problem. We apply the semi-analytical method (Michtchenko et al., 2006) to construct the averaged three-body Hamiltonian of a planetary system near a 3:1 resonance. Then we obtain the families of ACR, composed of symmetric and asymmetric solutions. Using the symmetric stable solutions we observe the law of structures (Ferraz-Mello,1988), for different mass ratio of the planets. We also study the evolution of the frequencies of σ1, resonant angle, and Δω, the secular angle. The resonant domains outside the immediate vicinity of ACR are studied using dynamical maps techniques. We compared the results obtained to planetary systems near a 3:1 MMR, namely 55 Cnc b-c, HD 60532 b-c and Kepler 20 b-c.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vortex-induced motion (VIM) is a highly nonlinear dynamic phenomenon. Usual spectral analysis methods, using the Fourier transform, rely on the hypotheses of linear and stationary dynamics. A method to treat nonstationary signals that emerge from nonlinear systems is denoted Hilbert-Huang transform (HHT) method. The development of an analysis methodology to study the VIM of a monocolumn production, storage, and offloading system using HHT is presented. The purposes of the present methodology are to improve the statistics analysis of VIM. The results showed to be comparable to results obtained from a traditional analysis (mean of the 10% highest peaks) particularly for the motions in the transverse direction, although the difference between the results from the traditional analysis for the motions in the in-line direction showed a difference of around 25%. The results from the HHT analysis are more reliable than the traditional ones, owing to the larger number of points to calculate the statistics characteristics. These results may be used to design risers and mooring lines, as well as to obtain VIM parameters to calibrate numerical predictions. [DOI: 10.1115/1.4003493]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To propose an automatic brain tumor segmentation system. METHODS: The system used texture characteristics as its main source of information for segmentation. RESULTS: The mean correct match was 94% of correspondence between the segmented areas and ground truth. CONCLUSION: Final results showed that the proposed system was able to find and delimit tumor areas without requiring any user interaction.