8 resultados para MAP Kinase Kinase Kinases
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Protein disulfide isomerase (PDI) and its homologs are oxidoreductases facilitating protein folding in the ER. Endo-PDI (also termed ERp46) is highly expressed in endothelial cells. It belongs to the PDI family but its physiological function is largely unknown. We studied the role of Endo-PDI in endothelial angiogenic responses. Stimulation of human umbilical vein endothelial cells (with TNFα (10ng/ml) increased ERK1/2 phosphorylation. This effect was largely attenuated by Endo-PDI siRNA, whereas JNK and p38 MAP kinase phosphorylation was Endo-PDI independent. Similarly, TNFα-stimulated NF-κB signaling determined by IκBα degradation as well as TNFα-induced ICAM expression was unaffected by Endo-PDI siRNA. The action of Endo-PDI was not mediated by extracellular thiol exchange or cell surface PDI as demonstrated by nonpermeative inhibitors and PDI-neutralizing antibody. Moreover, exogenously added PDI failed to restore ERK1/2 activation after Endo-PDI knockdown. This suggests that Endo-PDI acts intracellularly potentially by maintaining the Ras/Raf/MEK/ERK pathway. Indeed, knockdown of Endo-PDI attenuated Ras activation measured by G-LISA and Raf phosphorylation. ERK activation influences gene expression by the transcriptional factor AP-1, which controls MMP-9 and cathepsin B, two proteases required for angiogenesis. TNFα-stimulated MMP-9 and cathepsin B induction was reduced by silencing of Endo-PDI. Accordingly, inhibition of cathepsin B or Endo-PDI siRNA blocked the TNFα-stimulated angiogenic response in the spheroid outgrowth assays. Moreover ex vivo tube formation and in vivo Matrigel angiogenesis in response to TNFα were attenuated by Endo-PDI siRNA. In conclusion, our study establishes Endo-PDI as a novel, important mediator of AP-1-driven gene expression and endothelial angiogenic function
Resumo:
The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (lambda = 904 nm, 60 mW mean output power, 0.158 W/cm(2) for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm(2) for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model.
Resumo:
Cediranib is a potent inhibitor of the VEGF family receptor tyrosine kinases, and a new agent in cancer treatment. The drug has shown promising activity in a variety of solid malignancies, in preclinical models and in clinical trials. Its pharmacokinetics allow for a convenient once-daily administration, with a toxicity profile that is very similar to other VEGF inhibitors. Its main side effects include hypertension, nausea, dysphonia, fatigue and diarrhea. Adverse events seem to be manageable, especially when used in doses lower than 45 mg/day. Studies have shown some activity as a single agent or in combination in advanced tumors, but not enough to secure its approval for routine use up to now. Clinical trials are still evaluating the role of cediranib in combination chemotherapy with cytotoxic agents.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
The physiological and molecular processes controlling zygotic and somatic embryo development in angiosperms are mediated by a hierarchically organized program of gene expression. Despite the overwhelming information available about the molecular control of the embryogenic processes in angiosperms, little is known about these processes in gymnosperms. Here we describe the cloning and characterization of the expression pattern of the Araucaria angustifolia putative homolog of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene family member, designated as AaSERK1. The Araucaria AaSERK1 gene encodes a leucine-rich repeat receptor-like kinase showing significant similarity to angiosperm homologs of SERK1, known to be involved in early somatic and zygotic embryogenesis. Accordingly, RT-PCR results showed that AaSERK1 is preferentially expressed in Araucaria embryogenic cell cultures. Additionally, in situ hybridization results showed that AaSERK1 transcripts initially accumulate in groups of cells at the periphery of the embryogenic calli and then are restricted to the developing embryo proper. Our results indicate that AaSERK1 might have a role during somatic embryogenesis in Araucaria, suggesting a potentially conserved mechanism, involving SERK-related leucine-rich repeat receptor-like kinases, in the embryogenic processes among all seed plants.
Resumo:
Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.