5 resultados para Métal-chromophore

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical memories with long-term stability at high temperatures have long been pursued in azopolymers with photoinduced birefringence. In this study, we show that the residual birefringence in layer-by-layer (LbL) films made with poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) alternated with poly(allylamine hydrochloride) (PAH) can be tuned by varying the extent of electrostatic interactions with film fabrication at different pHs for PAH. The dynamics of both writing and relaxation processes could be explained with a two-stage mechanism involving the orientation of the chromophores per se and the chain movement. Upon calculating the activation energies for these processes, we demonstrate semiquantitatively that reduced electrostatic interactions in films prepared at higher pH, for which PAH is less charged, are responsible for the longer stability at high temperatures. This is attributed to orientation of PAZO chromophores via cooperative aggregation, where the presence of counterions hindered relaxation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalization with surfactants and with active molecules of deoxyribonucleic acid (DNA), thin film processing as well as their nonlinear optical and electrical properties are reviewed and discussed. On the basis of a quantum three level model, we show that the anomalous concentration variation of cubic susceptibility chi((3))(-3 omega; omega, omega, omega) in thin films of DNA-CTMA complexes doped with Disperse Red 1 chromophore can be explained by the concentration variation of two-photon resonance contribution. We show also that the DNA complexes, plasticized with glycerol and adequately doped can be processed into self standing conducting membranes with a high electrical conductivity. The measured ionic conductivity at room temperature, depending on dopant used and its concentration, is in the range of 3.5 x 10(-4)-10(-5) S/cm and increases linearly as a function of temperature, reaching 10(-3) S/cm at 358 K for the most conducting sample, obeying predominantly the Arrhenius law. Practical applications of DNA complexes are also described and discussed. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electronic and vibrational spectroscopic analysis of p-coumaric acid (HCou) and its deprotonated species was performed by UV-vis and Raman, respectively, and the results were supported by density functional theory (OFT) calculations. Electronic UV-vis spectral data of HCou solutions show that the deprotonation of the carboxyl group (Cou(-)) leads to a blue shift of the lowest energy electronic transition in comparison to the neutral species, whereas the subsequent deprotonation of the phenolic moiety (Cou(2-)) carries out to a more delocalized chromophore. The DFT geometric parameters calculations suggest that the variation in the electronic delocalization for the three organic species is due to different contribution of a quinoid structure that is significantly distorted in the case of Cou(2-). The Raman data of HCou and its sodium salts show that the main spectral features that allow to differentiate the three organic species are those involving the styrene nu(C=C)(sty) vibration at 1600cm(-1) region. Even though the Raman spectra of the sodium salts of Cou(-) and Cou(2-) anions show subtle differences, the appearing of a band at ca. 1598cm(-1) in the Na(2)Cou spectrum, assigned to a mode involving the carboxylate asymmetric stretching, nu(as)(COO), and the styrene stretching, nu(C=C)(sty), is quite characteristic, as confirmed by the theoretical Raman spectrum. Considering that p-coumaric acid is an archetypical phenolic compound with several biological activities that essentially depend upon the medium pH, Raman spectroscopy results reported in this work can provide a proper way to characterize such important phytochemical compound in different protonation states. In order to complement the characterization of the sodium salts, X-ray diffraction (XRD) and thermal analysis were performed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topographical character of conical intersections (CIs)-either sloped or peaked-has played a fundamental and important role in the discussion of the efficiency of CIs as photochemical "funnels." Here this perspective is employed in connection with a recent study of a model protonated Schiff base (PSB) cis to trans photoisomerization in solution [Malhado et al., J. Phys. Chem. A 115, 3720 (2011)]. In that study, the calculated reduced photochemical quantum yield for the successful production of trans product versus cis reactant in acetonitrile solvent compared to water was interpreted in terms of a dynamical solvent effect related to the dominance, for the acetonitrile case, of S-1 to S-0 nonadiabatic transitions prior to the reaching the seam of CIs. The solvent influence on the quantum yield is here re-examined in the sloped/peaked CI topographical perspective via conversion of the model's two PSB internal coordinates and a nonequilibrium solvent coordinate into an effective branching space description, which is then used to re-analyze the generalized Langevin equation/surface hopping results. The present study supports the original interpretation and enriches it in terms of topographical detail. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754505]