2 resultados para Ménage à génération coupée

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface ecophysiology at five sites in tropical South America across vegetation and moisture gradients is investigated. From the moist northwest (Manaus) to the relatively dry southeast (Pé de Gigante, state of São Paulo) simulated seasonal cycles of latent and sensible heat, and carbon flux produced with the Simple Biosphere Model (SiB3) are confronted with observational data. In the northwest, abundant moisture is available, suggesting that the ecosystem is light-limited. In these wettest regions, Bowen ratio is consistently low, with little or no annual cycle. Carbon flux shows little or no annual cycle as well; efflux and uptake are determined by high-frequency variability in light and moisture availability. Moving downgradient in annual precipitation amount, dry season length is more clearly defined. In these regions, a dry season sink of carbon is observed and simulated. This sink is the result of the combination of increased photosynthetic production due to higher light levels, and decreased respiratory efflux due to soil drying. The differential response time of photosynthetic and respiratory processes produce observed annual cycles of net carbon flux. In drier regions, moisture and carbon fluxes are in-phase; there is carbon uptake during seasonal rains and efflux during the dry season. At the driest site, there is also a large annual cycle in latent and sensible heat flux.