30 resultados para Lyapunov Exponent
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Decreased heart rate variability (HRV) is related to higher morbidity and mortality. In this study we evaluated the linear and nonlinear indices of the HRV in stable angina patients submitted to coronary angiography. Methods We studied 77 unselected patients for elective coronary angiography, which were divided into two groups: coronary artery disease (CAD) and non-CAD groups. For analysis of HRV indices, HRV was recorded beat by beat with the volunteers in the supine position for 40 minutes. We analyzed the linear indices in the time (SDNN [standard deviation of normal to normal], NN50 [total number of adjacent RR intervals with a difference of duration greater than 50ms] and RMSSD [root-mean square of differences]) and frequency domains ultra-low frequency (ULF) ≤ 0,003 Hz, very low frequency (VLF) 0,003 – 0,04 Hz, low frequency (LF) (0.04–0.15 Hz), and high frequency (HF) (0.15–0.40 Hz) as well as the ratio between LF and HF components (LF/HF). In relation to the nonlinear indices we evaluated SD1, SD2, SD1/SD2, approximate entropy (−ApEn), α1, α2, Lyapunov Exponent, Hurst Exponent, autocorrelation and dimension correlation. The definition of the cutoff point of the variables for predictive tests was obtained by the Receiver Operating Characteristic curve (ROC). The area under the ROC curve was calculated by the extended trapezoidal rule, assuming as relevant areas under the curve ≥ 0.650. Results Coronary arterial disease patients presented reduced values of SDNN, RMSSD, NN50, HF, SD1, SD2 and -ApEn. HF ≤ 66 ms2, RMSSD ≤ 23.9 ms, ApEn ≤−0.296 and NN50 ≤ 16 presented the best discriminatory power for the presence of significant coronary obstruction. Conclusion We suggest the use of Heart Rate Variability Analysis in linear and nonlinear domains, for prognostic purposes in patients with stable angina pectoris, in view of their overall impairment.
Resumo:
The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.
Resumo:
The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications. including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function. with exponent similar to 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAHIPVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10(-6) M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost. fast experimental procedures. (C) 2008 Published by Elsevier B.V.
Resumo:
In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.
Resumo:
A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose an extension of the invariance principle for nonlinear switched systems under dwell-time switched solutions. This extension allows the derivative of an auxiliary function V, also called a Lyapunov-like function, along the solutions of the switched system to be positive on some sets. The results of this paper are useful to estimate attractors of nonlinear switched systems and corresponding basins of attraction. Uniform estimates of attractors and basin of attractions with respect to time-invariant uncertain parameters are also obtained. Results for a common Lyapunov-like function and multiple Lyapunov-like functions are given. Illustrative examples show the potential of the theoretical results in providing information on the asymptotic behavior of nonlinear dynamical switched systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The associationist account for early word learning is based on the co-occurrence between referents and words. Here we introduce a noisy cross-situational learning scenario in which the referent of the uttered word is eliminated from the context with probability gamma, thus modeling the noise produced by out-of-context words. We examine the performance of a simple associative learning algorithm and find a critical value of the noise parameter gamma(c) above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order tau(-1/2) about gamma(c), where tau is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point. Copyright (C) EPLA, 2012
Resumo:
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.
Resumo:
A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H approximate to 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2 but with a non-Gaussian propagator.
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.
Resumo:
By means of nuclear spin-lattice relaxation rate T-1(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)(2) and the spin-ladder system (C5H12N)(2)CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T-1(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T-1(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.
Resumo:
Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.