64 resultados para Lutzomyia longipalpis saliva
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. Results We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils were decreased and CD8+ T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4+FOXP3+ cells, whereas the CD4+FOXP3+ population was reduced in the SGE-3X group. Moreover, CD4+ T cells and CD8+ T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. Conclusions These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.
Resumo:
Objective-Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results-Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant approximate to 3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion-Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events. (Arterioscler Thromb Vasc Biol. 2012;32:2185-2196.)
Resumo:
Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-alpha and IFN-gamma released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry. TNF-alpha and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-alpha and IFN-gamma. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-alpha whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Sand fly saliva contains potent and complex pharmacologic molecules that are able to modulate the host's hemostatic, inflammatory, and immune systems. In this study, we evaluated the effects of salivary gland sonicate (SGS) of Lutzomyia intermedia, the natural vector of Leishmania braziliensis, on monocytes obtained from the peripheral blood mononuclear cells (PBMC) of healthy volunteers. We investigated the effects of sand fly saliva on cytokine production and surface molecule expression of LPS-stimulated human monocytes uninfected or infected with L. braziliensis. Results Pre-treatment of non-infected human monocytes with L. intermedia SGS followed by LPS-stimulation led to a significant decrease in IL-10 production accompanied by a significant increase in CD86, CD80, and HLA-DR expression. Pre-treatment with SGS followed by LPS stimulation and L. braziliensis infection led to a significant increase in TNF-α, IL-6, and IL-8 production without significant alterations in co-stimulatory molecule expression. However, pre-treatment with L. intermedia SGS did not result in significant changes in the infection rate of human monocytes. Conclusion Our data indicate that L. intermedia saliva is able to modulate monocyte response, and, although this modulation is dissociated from enhanced infection with L. braziliensis, it may be associated with successful parasitism.
Resumo:
Background: Parasites of the Leishmania genus alternate between the flagellated extracellular promastigote stage and intracellular amastigotes. Here we report the characterization of a Leishmania isolate, obtained from a cutaneous leishmaniasis patient, which presents peculiar morphological features. Methods: The parasite was cultured in vitro and characterized morphologically using optical and electron microscopy. Identification was performed based on monoclonal antibodies and internal ribosomal spacer typing. In vitro macrophage cultures, murine experimental models and sand fly infections were used to evaluate infectivity in vitro and in vivo. Results: The isolate was identified as Leishmania (Viannia) braziliensis. In the atypical promastigotes grown in culture, a short flagellum surrounded or interrupted by a protuberance of disorganized material was observed. A normal axoneme was present close to the basal body but without elongation much further outside the flagellar pocket. A disorganized swelling at the precocious end of the axoneme coincided with the lack of a paraflagellar rod structure. The isolate was able to infect macrophages in vitro, induce lesions in BALB/c mice and infect Lutzomyia longipalpis. Conclusions: Notwithstanding the lack of an extracellular flagellum, this isolate infects macrophages in vitro and produces lesions when inoculated into mice. Moreover, it is able to colonize phlebotomine sand flies. Considering the importance attributed to the flagellum in the successful infection and survival of Leishmania in the insect midgut and in the invasion of macrophages, these findings may bring new light into the infectious mechanisms of L. (V.) braziliensis.
Resumo:
Aspects of phlebotomine behavior were investigated in the city of Campo Grande, Mato Grosso do Sul state. The insects were captured weekly during December 2003 to November 2005, with Centers for Disease Control light traps at seven different sites including forests and residential areas. In total, 11,024 specimens (7,805 males and 3,219 females) were collected, from which 9,963 (90.38%) were identified as Lutzomyia longipalpis, the proven vector of American visceral leishmaniasis agent. The remaining 9.62% comprised 21 species. L. longipalpis was the most frequent species in all sampled sites, and the first in the ranking of standardized species abundance index. In residential areas this species clearly predominated in the peridomicile (90.96%), in contrast to the intradomicile (9.04%); in animal shelters, it was more numerous in hen houses and prevailed at ground level, inside, and at forest edge around the residences; this aspect is worrying because this insect may remain sheltered in forested environments during the use of insecticides in homes. In the forest environment, other probable or proven vector of cutaneous leishmaniasis agents were also captured such as Lutzomyia whitmani (=Nyssomyia whitmani, sensu Galati), Lutzomyia antunesi (=Nyssomyia antunesi, sensu Galati), and Lutzomyia flaviscutellata (=Bichromomyia flaviscutellata, sensu Galati).
Resumo:
Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that "stressful conditions" will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.
Resumo:
The environmental factors that contribute to the development of autoimmune diseases are largely unknown. Endemic pemphigus foliaceus in humans, known as Fogo Selvagem (FS) in Brazil, is mediated by pathogenic IgG4 autoantibodies against desmoglein 1 (Dsg1). Clusters of FS overlap with those of leishmaniasis, a disease transmitted by sand fly (Lutzomyia longipalpis) bites. In this study, we show that salivary Ags from the sand fly, and specifically the LJM11 salivary protein, are recognized by FS Abs. Anti-Dsg1 monoclonal autoantibodies derived from FS patients also cross-react with LJM11. Mice immunized with LJM11 generate anti-Dsg1 Abs. Thus, insect bites may deliver salivary Ags that initiate a cross-reactive IgG4 Ab response in genetically susceptible individuals and lead to subsequent FS. Our findings establish a clear relationship between an environmental, noninfectious Ag and the development of potentially pathogenic autoantibodies in an autoimmune disease. The Journal of Immunology, 2012, 189: 1535-1539.
Resumo:
Visceral leishmaniasis (VL) is a zoonotic disease characterized by infection of mononuclear phagocytes by Leishmania chagasi. The primary vector is Lutzomyia longipalpis and the dog is the main domestic reservoir. The control and current treatment of dogs using synthetic drugs have not shown effectiveness in reducing the incidence of disease in man. In attempt to find new compounds with leishmanicidal action, plant secondary metabolites have been studied in search of treatments of VL. This study aimed to evaluate the leishmanicidal activity of Musa paradisiaca (banana tree) and Spondias mombin (cajazeira) chemical constituents on promastigotes and amastigotes of L. chagasi. Phytochemical analysis by column chromatography was performed on ethanol extracts of two plants and fractions were isolated. Thin layer chromatography was used to compare the fractions and for isolation the substances to be used in vitro tests. The in vitro tests on promastigotes of L chagasi used the MTT colorimetric method and the method of ELISA in situ was used against amastigotes besides the cytotoxicity in RAW 264.7 cells. Of the eight fractions tested, Sm1 and Sm2 from S. mombin had no action against promastigotes, but had good activity against amastigotes. The fractions Mp1 e Mp4 of M. paradisiaca were very cytotoxic to RAW 264.7 cells. The best result was obtained with the fraction Sm3 from S. mombin with IC50 of 11.26 mu g/ml against promastigotes and amastigotes of 0.27 mu g/ml. The fraction Sm3 characterized as tannic acid showed the best results against both forms of Leishmania being a good candidate for evaluation in in vivo tests. (C) 2012 Published by Elsevier B.V.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, Sao Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
Abstract Background The study of the distribution and ecology of sandfly species is essential for epidemiological surveillance and estimation of the transmission risk of Leishmania spp. infection. Findings In the present study, sandflies were captured in native fragmented forest areas in Rubião Júnior district, Botucatu municipality, São Paulo state, Brazil, between September 2001 and January 2005. A minimum of two automatic light traps were installed per night from 6 pm to 8 am, in different months, resulting in approximately 900 collecting hours. During this period, 216 sandfly specimens of sixteen species were captured. Pintomyia monticola and Brumptomyia guimaraesi were the most abundant with 56 specimens (25.93%) captured per species, followed by Pintomyia fischeri 28 (12.96%) and Psathyromyia pascalei 18 (8.33%). Other captured species were Lutzomyia amarali, Sciopemyia sordellii, Psathyromyia aragaoi, Nyssomyia whitmani, Migonemyia migonei, Pintomyia bianchigalatiae, Pintomyia misionensis, Brumptomyia carvalheiroi, Brumptomyia cardosoi, Brumptomyia cunhai, Brumptomyia nitzulescui, Brumptomyia brumpti and Brumptomyia spp. represented by 58 (26.85%) specimens. Conclusions Although less frequently found, the presence of Pintomyia fischeri, Nyssomyia whitmani and Migonemyia migonei, known vectors of Leishmania braziliensis, indicates risk of American cutaneous leishmaniasis occurrence. Moreover, the absence of Lutzomyia longipalpis-the main vector of Leishmania infantum chagasi, which is the agent of American visceral leishmaniasis-suggests that there is no risk of introduction and establishment of this disease in the studied area.
Resumo:
Abstract Background Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of Aedes aegypti-associated bacterial species in larvae, pupae and adults of A. aegypti. Findings Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from A. aegypti single whole individuals and midguts. A. aegypti associated bacterial species were also detected in the midgut of four other insect species, Lutzomyia longipalpis, Drosophila melanogaster, Bradysia hygida and Apis mellifera. Conclusions Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.
Resumo:
The urbanization of visceral leishmaniasis in Brazil has been related to environmental changes, migration, interaction and spread of sylvatic reservoirs and infected dogs to areas with no transmission, and adaptation of the vector Lutzomyia longipalpis to the peridomiciliary environment. From 1980 to 2005, Brazil recorded 59,129 cases of visceral leishmaniasis, 82.5% of which in the Northeast region. Visceral leishmaniasis gradually spread to other regions of the country: in 1998 these other regions reported 15% of all cases, but by 2005 this proportion had increased to 44%. From 1998 to 2005, indigenous cases were reported in 1,904 different municipalities of the country (34.2%). Reservoir and vector control pose major challenges for disease control, since there is a need for better knowledge of vector behavior in urban areas, and control activities involve high operational costs. In recent years the Brazilian Ministry of Health has supported research on the laboratory diagnosis of infection and disease in humans and dogs, treatment of patients, evaluation of the effectiveness of control strategies, and development of new technologies that could contribute to the surveillance and control of visceral leishmaniasis in the country.
Resumo:
INTRODUCTION: This work was carried out on the purpose of identifying the species of phlebotomine sandflies in the municipality of Monte Negro, state of Rondonia, Brazil, that may have been transmitting the American cutaneous leishmaniasis (ACL), and concisely describe epidemiological aspects of disease. METHODS: The epidemiologic and socioeconomical indicators were obtained from government institutions and the local Municipal Secretary of Health. Phlebotomine sandflies were captured using CDC light traps between July 2006 to July 2008. The total of 1,240 of female sandflies were examined by PCR method directed to k-DNA. RESULTS: There has been a significant decrease in the incidence of ACL of about 50% over the last ten years in the municipality. A total of 1,935 specimens of 53 sandfly species were captured, three of the genus Brumptomyia genus and 50 of the genus Lutzomyia. The predominant species was Lutzomyia acanthopharynx, Lutzomyia whitmani, Lutzomyia geniculata and Lutzomyia davisi. None were positive for Leishmania sp. CONCLUSIONS: Four sandflies species were found in the State of Rondonia for the first time: Brumptomyia brumpti, Lutzomyia tarapacaensis, Lutzomyia melloi and Lutzomyia lenti. The presence of Lutzomyia longipalpis, was also captured. Socioeconomical improvement of Brazilian economy and the increase of environmental surveillance in the last 15 years collaborated in the decrease of people exposed to vectors, reducing the incidence of ACL.
Resumo:
Purpose: Bacterial leakage along the implant-abutment interface, with consequent species harboring the inner parts of two-part dental implant systems, has been reported in the literature. The aim of this in vitro study was to evaluate bacterial leakage from human saliva to the internal part of the implants along the implant-abutment interface under loaded and unloaded conditions using DNA Checkerboard. Materials and Methods: Sixty denial implants-20 each of external-hexagon, internal-hexagon, and Morse cone-connection designs-and their conical abutments were used in this study. Each group was subdivided into two groups of 10 loaded and 10 unloaded implants. The assemblies were immersed in human saliva and either (1) loaded with 500,000 cycles at 120 N (experimental group) or (2) incubated in static conditions for 7 days at 35 degrees C (unloaded control group). Results: Microorganisms were found in the internal surfaces of all types of connections. The Morse cone connection presented the lowest count of microorganisms in both the unloaded and loaded groups. Loaded implants presented with higher counts of microorganisms than unloaded implants for external- and internal-hex connections. Conclusion: Bacterial species from human saliva may penetrate along the implant-abutment interface under both unloaded and loaded conditions for all connections evaluated. Morse cone-connection implants showed the lowest counts of microorganisms for both conditions. External- and internal-hex implants showed a higher incidence of bacteria and higher bacterial counts after simulated loading. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:551-560.