44 resultados para Low-mass star

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions similar to 100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Lithium abundances in open clusters are a very effective probe of mixing processes, and their study can help us to understand the large depletion of lithium that occurs in the Sun. Owing to its age and metallicity, the open cluster M 67 is especially interesting on this respect. Many studies of lithium abundances in M 67 have been performed, but a homogeneous global analysis of lithium in stars from subsolar masses and extending to the most massive members, has yet to be accomplished for a large sample based on high-quality spectra. Aims. We test our non-standard models, which were calibrated using the Sun with observational data. Methods. We collect literature data to analyze, for the first time in a homogeneous way, the non-local thermal equilibrium lithium abundances of all observed single stars in M 67 more massive than similar to 0.9 M-circle dot. Our grid of evolutionary models is computed assuming a non-standard mixing at metallicity [Fe/H] = 0.01, using the Toulouse-Geneva evolution code. Our analysis starts from the entrance into the zero-age main-sequence. Results. Lithium in M 67 is a tight function of mass for stars more massive than the Sun, apart from a few outliers. A plateau in lithium abundances is observed for turn-off stars. Both less massive (M >= 1.10 M-circle dot) and more massive (M >= 1.28 M-circle dot) stars are more depleted than those in the plateau. There is a significant scatter in lithium abundances for any given mass M <= 1.1 M-circle dot. Conclusions. Our models qualitatively reproduce most of the features described above, although the predicted depletion of lithium is 0.45 dex smaller than observed for masses in the plateau region, i.e. between 1.1 and 1.28 solar masses. More work is clearly needed to accurately reproduce the observations. Despite hints that chromospheric activity and rotation play a role in lithium depletion, no firm conclusion can be drawn with the presently available data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The predictions of Drell-Yan production of low-mass lepton pairs, at high rapidity at the LHC, are known to depend sensitively on the choice of factorization and renormalization scales. We show how this sensitivity can be greatly reduced by fixing the factorization scale of the LO contribution based on the known NLO matrix element, so that observations of this process at the LHC can make direct measurements of parton distribution functions in the low x domain; x less than or similar to 10(-4).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ALICE experiment has measured low-mass dimuon production in pp collisions at root s = 7 TeV in the dimuon rapidity region 2.5 < y < 4. The observed dimuon mass spectrum is described as a superposition of resonance decays (eta, rho, omega, eta', phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for omega and phi are sigma(omega)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 5.28 +/- 0.54(stat) +/- 0.49(syst) mb and sigma(phi)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 0.940 +/- 0.084(stat) +/- 0.076(syst) mb. The differential cross sections d(2)sigma/dy dp(t) are extracted as a function of p(t) for omega and phi. The ratio between the rho and omega cross section is obtained. Results for the phi are compared with other measurements at the same energy and with predictions by models. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have conducted a program of trigonometric distance measurements to 13 members of the TW Hydrae Association (TWA), which will enable us (through back-tracking methods) to derive a convincing estimate of the age of the association, independent of stellar evolutionary models. With age, distance, and luminosity known for an ensemble of TWA stars and brown dwarfs, models of early stellar evolution (which are still uncertain for young ages and substellar masses) will then be constrained by observations over a wide range of masses (0.025 to 0.7 M⊙).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M-* = 1.21 +/- 0.05 M-circle dot and radius R-* = 1.65 +/- 0.04 R-circle dot. The planet has a mass of M-P = 1.11 +/- 0.06 M-Jup and radius of R-P = 1.29 +/- 0.03 R-Jup. The resulting bulk density is only rho = 0.71 +/- 0.06 g cm (3), which is much lower than that for Jupiter. Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a approximate to 30% larger radius.