3 resultados para Long-line

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dasyatis guttata has been target of artisanal fisheries in the coast of Bahia (Northeast Brazil) mainly by “arraieira” (gillnet) and “grozeira” (bottom long-line), but until now there is no stock assessment study. One of the important data for this knowledge is reliable indices of abundance. The aims of the present work are to: (1) estimate the best predictor for relative abundance (catch-per-unit-of-effort, CPUE), examining whether catch (production – kg) was related to: soak time of the gear, size of the gillnet or number of hooks, applying generalized linear model (GLM); (2) estimate the annual CPUE (kg/hooks and kg/m) averaged by gear; and (3) assess the temporal CPUE variance. Based on monthly sampling between January 2012 and January 2013, 222 landings by grozeira and 76 by arraiaiera were recorded in the two landing sites in Todos os Santos Bay, Bahia. A total of 14,550 kg (average = 44 kg/month) of D. guttata was captured. Models for both gears were highly significant (P < 0.0001). The analysis indicated that the most appropriate variable for CPUE analysis was the size of the gillnet (P < 0.001) and the number of hooks (P < 0.0001). Soak time of the gear was not significant for both gears (P = 0.4). High residual deviance expresses the complexity of the relations between ecosystem factors and other fisheries factors affecting relative abundance, which were not considered in this study. The average CPUE by grozeira was 6.39 kg/100 hooks ± 8.89 and by arraieira, 1.47 kg/100 m ± 1.66 over the year. Kruskal-Wallis test showed effect of the month on the mean grozeira CPUE (P = <0.001), but no effect (P = 0.096) on the mean arraieira CPUE. Grozeira CPUE values were highest in December and March, and lowest between May to August

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objectives: Patients who survive acute kidney injury (AKI), especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. Design, Setting, Participants, & Measurements: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA) for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD) or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value >= 60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. Results: The median length of follow-up was 50 months (30-90 months). All patients had stabilized their glomerular filtration rates by 18 months and 83% of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19%) at discharge and in 54 (64%) by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p < 0.0001) and serum creatinine at hospital discharge (OR 2.48, p = 0.007) were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and need for dialysis, was not associated with non renal recovery. Conclusions: Renal recovery must be evaluated no earlier than one year after an acute kidney injury episode. Nephrology referral should be considered mainly for older patients and those with elevated serum creatinine at hospital discharge.