4 resultados para Local productive arrangement intense culture
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
O artigo procura identificar e analisar a evolução das aglomerações produtivas do setor confeccionista no Sul do Brasil. Dois fatores alicerçam o procedimento metodológico: proximidade geográfica e concentração setorial, combinados por Análise Espacial de Concentração. O primeiro, proximidade geográfica, por meio da Análise Exploratória de Dados Espaciais, e o segundo, concentração setorial, por meio da construção do índice de Concentração normalizado. Os resultados evidenciaram a transposição positiva dos aglomerados. Além disso, verificou-se evolução para o Estado do Paraná, tanto em transborda mento como em concentração espacial. Observou-se estabilidade em spillover, mas com forte concentração, no Estado de Santa Catarina.
Resumo:
This paper describes the effect of using different titanium precursors on the synthesis and physical properties of SrTiO3 powders obtained by microwave-assisted hydrothermal method. X-ray diffraction measurements, X-ray absorption near-edge structure (XANES) spectroscopy, field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HRTEM) were carried out to investigate the structural and optical properties of the SrTiO3 spherical and cubelike-shaped particles. The appropriate choice of the titanium precursor allowed the control of morphological and photoluminescence (PL) properties of SrTiO3 compound. The PL emission was more intense in SrTiO3 samples composed of spherelike particles. This behavior was attributed to the existence of a lower amount of defects due to the uniformity of the spherical particles.
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
The present paper presents a theoretical analysis of a cross flow heat exchanger with a new flow arrangement comprehending several tube rows. The thermal performance of the proposed flow arrangement is compared with the thermal performance of a typical counter cross flow arrangement that is used in chemical, refrigeration, automotive and air conditioning industries. The thermal performance comparison has been performed in terms of the following parameters: heat exchanger effectiveness and efficiency, dimensionless entropy generation, entransy dissipation number, and dimensionless local temperature differences. It is also shown that the uniformity of the temperature difference field leads to a higher thermal performance of the heat exchanger. In the present case this is accomplished thorough a different organization of the in-tube fluid circuits in the heat exchanger. The relation between the recently introduced "entransy dissipation number" and the conventional thermal effectiveness has been obtained in terms of the "number of transfer units". A case study has been solved to quantitatively to obtain the temperature difference distribution over two rows units involving the proposed arrangement and the counter cross flow one. It has been shown that the proposed arrangement presents better thermal performance regardless the comparison parameter. (C) 2012 Elsevier Masson SAS. All rights reserved.