9 resultados para Local Weak Minimal Solution
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We studied the low energy motion of particles in the general covariant. version of Horava-Lifshitz gravity proposed by Horava and Melby-Thompson. Using a scalar field coupled to gravity according to the minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write an effective relativistic metric for a general solution. As a result, we discovered that the equivalence principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally, we analyzed the motion on the spherical symmetric solution proposed by Horava and Melby-Thompson, where we could find its effective line element and compute spin-0 geodesics. Using standard methods we have shown that such an effective metric cannot reproduce Newton's gravity law even in the weak gravitational field approximation. (C) 2011 Elsevier B.V All rights reserved.
Resumo:
The jucara's palm (Euterpe edulis), native to the Atlantic Forest is one of the palms most exploited for the removal of heart palm and the tree was removed in large areas. The aim of this study was to examine the feasibility of the methodology of "minimally processed" in jucara's palm. The raw material was obtained by COOPERAGUA, Sete Barras (SP) through a Sustainable Management Plan culminating in a permit issued by IBAMA, Forestry Foundation and DPRN. The process began with the withdrawal of external sheaths and cut, with subsequent immersion in a solution of sodium metabisulphite (Na2S2O5 - 200 ppm), sanitize with a chlorine solution and soak in brine acidified to wait until the filling. The cuttings were placed in polyethylene bags containing acidified solution at concentrations A 0.225%, B 0.375%, C 0.6%, D 0.825% determined by titration curve. The staining became clearer in treatments C and D, due to more acidity, resulting in higher inactivation of enzymes. Even with these positive results, were concluded that minimal processing of jucara is not effective due to the blackout, preventing its commercialization. To stop it requires the bleaching step, which does not characterize it as minimally processed.
Resumo:
The diagnosis of T-cell large granular lymphocytic leukemia in association with other B-cell disorders is uncommon but not unknown. However, the concomitant presence of three hematological diseases is extraordinarily rare. We report an 88-year-old male patient with three simultaneous clonal disorders, that is, CD4+/CD8(weak) T-cell large granular lymphocytic leukemia, monoclonal gammopathy of unknown significance and monoclonal B-cell lymphocytosis. The patient has only minimal complaints and has no anemia, neutropenia or thrombocytopenia. Lymphadenopathy and hepatosplenomegaly were not present. The three disorders were characterized by flow cytometry analysis, and the clonality of the T-cell large granular lymphocytic leukemia was confirmed by polymerase chain reaction. Interestingly, the patient has different B-cell clones, given that plasma cells of monoclonal gammopathy of unknown significance exhibited a kappa light-chain restriction population and, on the other hand, B-lymphocytes of monoclonal B-cell lymphocytosis exhibited a lambda light-chain restriction population. This finding does not support the antigen-driven hypothesis for the development of multi-compartment diseases, but suggests that T-cell large granular lymphocytic expansion might represent a direct antitumor immunological response to both B-cell and plasma-cell aberrant populations, as part of the immune surveillance against malignant neoplasms.
Resumo:
We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m((g) over tilde) greater than or similar to 500 GeV as indicated by recent LHC results, chargino-neutralino ((W) over tilde (+/-)(1)(Z) over tilde (2)) production is the dominant cross section for m((W) over tilde1) similar to m((Z) over tilde2) < m(<(g)over tilde>)/3 at LHC with root s = 7 TeV (LHC7). Furthermore, if m((Z) over tilde1) + (m (Z) over tilde) less than or similar to m((Z) over tilde2) less than or similar to m((Z) over tilde1) + m(h), then (Z) over tilde (2) dominantly decays via (Z) over tilde (2) -> (Z) over tilde (1)Z, while (W) over tilde (1) decays via (W) over tilde (1) -> (Z) over tilde W-1. We investigate the LHC7 reach in the W Z + (sic)T channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the W Z+ (sic)T channel becomes competetive with the reach in the canonical (sic)T + jets channel for integrated luminosities similar to 30 fb(-1). We also present the LHC7 reach for a simplified model with arbitrary m((Z) over tilde1) and m((W) over tilde1) similar to m((Z) over tilde2). Here, we find a reach of up to m((W) over tilde1) similar to 200 (250) GeV for 10 (30) fb(-1).
Resumo:
We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
Resumo:
Tb3+ doped CaZrO3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO3:Tb3+ exhibits three thermoluminescence (TL) glow peaks at 126 degrees C, 200 degrees C and 480 degrees C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O- ion. Centre II with an axial symmetric g-tensor with principal values g(parallel to) = 1.9986 and g(perpendicular to) = 2.0023 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TL peak in CaZrO3:Tb3+ phosphor. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T-2. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied, where the effective dipolar coupling is amplified by a REDOR-like pi-pulse train. However, a previously described constant-time variant of this experiment is not sensitive to the motion-induced T-2 effect, which precludes the observation of motions over a large range of rates ranging from hundreds of Hz to around a MHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is still sensitive to T-2 effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions, and suggest the best experimental conditions to avoid imperfections. Furthermore, an in-depth theoretical analysis of the interplay of REDOR-like recoupling and proton decoupling based on Average-Hamiltonian Theory was performed, which allowed explaining the origin of many artifacts found in literature data. (C) 2012 Elsevier Inc. All rights reserved.