15 resultados para Listening experiment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
Many extractors are used to quantify available P in soils, but few studies have assessed the availability of P in soils of the wet tropics amended with high rates of biosolids. In this study, ion exchange resin, Mehlich-1 solution, and Fe-impregnated strips were used to quantify available P in samples from an Oxisol amended with surface-applied biosolids in a long-term field experiment. The soil's maximum capacity for P adsorption was also estimated. Experimental design consisted of randomized blocks, with four treatments and three replicates. Samples of biosolids were collected every year during the experiment, from 1999 to 2002. In 1999, two applications were made before growing maize (Zea mays L.) in austral summer and winter. Treatments were: Control (no biosolids added); B (biosolids added at rates based on their total N content); B2 (biosolids added at twice the rate of B), and B4 (biosolids added at four times the rate of B). Soil samples were collected at 0- to 0.1-, 0.1- to 0.2-, and 0.2- to 0.4-m depths. Biosolids were broadcast applied and incorporated into the soil to a depth of 0.2 m using a rotary hoe. The Oxisol had a high P-adsorption capacity (around 2450 mg kg(-1)) because of its high contents of clay and Fe and Al oxides. All the extractors were effective at assessing P availability and were positively correlated among themselves. Available P soil contents correlated positively with P content in maize leaves and grains, and the resin method yielded the highest correlation with P contents in leaves and grains.
Resumo:
We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]
Resumo:
We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
We examined the effects of listening to music on attentional focus, rating of perceived exertion (RPE), pacing strategy and performance during a simulated 5-km running race. 15 participants performed 2 controlled trials to establish their best baseline time, followed by 2 counterbalanced experimental trials during which they listened to music during the first (M-start) or the last (M-finish) 1.5 km. The mean running velocity during the first 1.5 km was significantly higher in M-start than in the fastest control condition (p < 0.05), but there was no difference in velocity between conditions during the last 1.5 km (p > 0.05). The faster first 1.5 m in M-start was accompanied by a reduction in associative thoughts compared with the fastest control condition. There were no significant differences in RPE between conditions (p > 0.05). These results suggest that listening to music at the beginning of a trial may draw the attentional focus away from internal sensations of fatigue to thoughts about the external environment. However, along with the reduction in associative thoughts and the increase in running velocity while listening to music, the RPE increased linearly and similarly under all conditions, suggesting that the change in velocity throughout the race may be to maintain the same rate of RPE increase.
Resumo:
Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]
Resumo:
Identical neutral kaon pair correlations are measured in root s = 7 TeV pp collisions in the ALICE experiment. One-dimensional (KsKs0)-K-0 correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final-state interactions of the a(0)/f(0) resonance. (KsKs0)-K-0 correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, mT, as seen in pi pi correlations in pp collisions and in heavy-ion collisions. Transverse mass scaling is observed between the (KsKs0)-K-0 and pi pi radii. Also, the first observation is made of the decay of the f(2)'(1525) meson into the (KsKs0)-K-0 channel in pp collisions. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]
Resumo:
The concept of metacontingency was taught to undergraduate students of Psychology by using a "game" simulation proposed originally by Vichi, Andery and Glenn (2009). Twenty-five students, distributed into three groups were exposed to six experimental sessions in which they had to make bets and divide the amounts gained. The three groups competed against each other for photocopies quotas. Two contingencies shifted over the sessions. Under Contingency B, the group would win points only if in the previous round each member had received the same amount of points and under Contingency A, winning was contingent on an unequal distribution of the points. We observed that proportional divisions predominated independent of the contingency in course. The manipulation of cultural consequences (winning or losing points) produced consistent modifications in two response categories: 1) choices of the value bet in each round, and 2) divisions of the points among group members. Controlling relations between cultural consequences and the behavior of dividing were statistically significant in one of the groups, whereas in the other two groups controlling relations were observed only in Contingency B. A review of the reinforcement criteria used in the original experiment is suggested.
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Carr-Purcell pulse sequence, with low refocusing flip angle, produces echoes midway between refocusing pulses that decay to a minimum value dependent on T*(2). When the refocusing flip angle was pi/2 (CP90) and tau > T*(2), the signal after the minimum value, increased to reach a steady-state free precession regime (SSFP), composed of a free induction decay signal after each pulse and an echo, before the next pulse. When tau < T*(2), the signal increased from the minimum value to the steady-state regime with a time constant (T*) = 2T(1)T(2)/(T-1 + T-2). identical to the time constant observed in the SSFP sequence, known as the continuous wave free precession (CWFP). The steady-state amplitude obtained with M-cp90 = M0T2/(T-1+T-2) was identical to CWFP. Therefore, this sequence was named CP-CWFP because it is a Carr-Purcell sequence that produces results similar to the CWFP. However, CP-CWFP is a better sequence for measuring the longitudinal and transverse relaxation times in single scan, when the sample exhibits T-1 similar to T-2. Therefore, this sequence can be a useful method in time domain NMR and can be widely used in the agriculture, food and petrochemical industries because those samples tend to have similar relaxation times in low magnetic fields. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
Cirrus clouds are an interesting point in the research of the atmosphere due their behavior and the effect on the earth radiation budget. They can affect the atmospheric radiation budget by reflecting the incoming solar radiation and absorbing the outgoing terrestrial radiation. Also, this cloud type is involved in the dehydration of the upper troposphere and lower stratosphere. So, it is interesting to increment the measurements of this type of clouds from the ground. During November and December 2012, through the CHUVA-SUL campaign, measurements with lidar in Santa Maria, Rio Grande do Sul were conducted. The system installed in Santa Maria site (29.8 °S; 53.7 °W, 100 m asl) was a single elastic-backscatter lidar using the wavelength of 532 nm. Some days with cirrus clouds lidar measurements were detected. Four days with presence of cirrus cloud are showed in the present study. These days, 7, 8, 19 and 28 November 2012, was selected due the persistence of cirrus clouds over many hours. The raw retrieval lidar signals and inverted backscatter coefficient profiles were analyzed for the selected days. Base and top height was obtained by analysis of raw signal and backscatter coefficient. Extinction coefficient profiles were obtained by the assumption of the lidar ratio. Cirrus cloud optical depth (COD) values were calculated, from the integration of the extinction coefficient between the base and top altitudes of the cirrus clouds.
Resumo:
Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth’s radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.