3 resultados para Lipid transport

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although exercise increases HDL-cholesterol, exercise-induced changes in HDL metabolism have been little explored. Lipid transfer to HDL is essential for HDL's role in reverse cholesterol transport. We investigated the effects of acute exhaustive exercise on lipid transfer to HDL. We compared plasma lipid, apolipoprotein and cytokine levels and in vitro transfer of four lipids from a radioactively labeled lipid donor nanoemulsion to HDL in sedentary individuals (n = 28) and in marathon runners (n = 14) at baseline, immediately after and 72 h after a marathon. While HDL-cholesterol concentrations and apo A1 levels were higher in marathon runners, LDL-cholesterol, apo B and triacylglycerol levels were similar in both groups. Transfers of non-esterified cholesterol [6.8 (5.7-7.2) vs. 5.2 (4.5-6), p = 0.001], phospholipids [21.7 (20.4-22.2) vs. 8.2 (7.7-8.9), p = 0.0001] and triacylglycerol [3.7 (3.1-4) vs. 1.3 (0.8-1.7), p = 0.0001] were higher in marathon runners, but esterified-cholesterol transfer was similar. Immediately after the marathon, LDL- and HDL-cholesterol concentrations and apo A1 levels were unchanged, but apo B and triacylglycerol levels increased. Lipid transfer of non-esterified cholesterol [6.8 (5.7-7.2) vs. 5.8 (4.9-6.6), p = 0.0001], phospholipids [21.7 (20.4-22.2) vs. 19.1 (18.6-19.3), p = 0.0001], esterified-cholesterol [3.2 (2.2-3.8) vs. 2.3 (2-2.9), p = 0.02] and triacylglycerol [3.7 (3.1-4) vs. 2.6 (2.1-2.8), p = 0.0001] to HDL were all reduced immediately after the marathon but returned to baseline 72 h later. Running a marathon increased IL-6 and TNF-alpha levels, but after 72 h these values returned to baseline. Lipid transfer, except esterified-cholesterol transfer, was higher in marathon runners than in sedentary individuals, but the marathon itself acutely inhibited lipid transfer. In light of these novel observations, further study is required to clarify how these metabolic changes can influence HDL composition and anti-atherogenic function.